Бесплатная техническая библиотека
Тиристорные таймеры. Энциклопедия радиоэлектроники и электротехники

Энциклопедия радиоэлектроники и электротехники / Часы, таймеры, реле, коммутаторы нагрузки
Комментарии к статье
Тиристорные коммутаторы могут быть с успехом использованы в схемах таймеров.
Схема одного из таких таймеров представлена на рис.1. В исходном состоянии тиристор VS1 закрыт, и устройство не потребляет ток от источника питания. При нажатии на кнопку SB1 ("Пуск") конденсатор С1 разряжается через диод VD1. Одновременно на управляющий электрод тиристора через резистор R1 подается управляющее напряжение. Тиристор VS1 включается, и через сопротивление нагрузки RH протекает ток. Одновременно разряженный ранее времязадающий конденсатор С1 начинает заряжаться через резистор R3 и потенциометр R4. Скорость заряда конденсатора зависит от сопротивления R4.
Рис. 1. Принципиальная схема тиристорного таймера 1
Когда напряжение на обкладках конденсатора превысит напряжение пробоя стабилитрона VD2, конденсатор разряжается через переход эмиттер-база транзистора VT2. Он открывается, соответственно, открывается и транзистор VT1. Этот транзистор шунтирует цепочку последовательно включенных тиристора VS1 и диода VD3. Поскольку падение напряжения на открытом транзисторе мало, такое шунтирование равнозначно прерыванию тока через тиристор. Следовательно, тиристор выключается. Зарядный процесс прекращается (R4 отключен от зарядной цепи), и, поскольку конденсатор С1 уже успел частично разрядиться, напряжение на нем понизилось настолько, что стабилитрон VD2 перестает проводить ток и участвовать в зарядном процессе. Соответственно, транзисторы VT2 и VT1 закрываются. Схема переходит в исходное состояние и готова к очередному включению.
Интервал экспозиций таймера определяется постоянной времени τ=С1(R3+R4) и составляет для указанных на схеме номиналов 1...20 с. В силу краткосрочности переходных процессов, в качестве транзистора VT1 можно использовать маломощные транзисторы КТ315. В схеме желательно применять транзисторы с высокими значениями р.
Рис.2. Принципиальная схема тиристорного таймера 2
Второй таймер (рис.2) работает по принципу разряда заряженного конденсатора. В исходном состоянии тиристор и транзистор закрыты. При нажатии на пусковую кнопку SB1 управляющее напряжение включает тиристор. Одновременно заряжается конденсатор С1. Напряжение, снимаемое с С1, складывается "в противофазе" с напряжением, поступающим через открытый тиристор, потенциометр R3 и резистор R4, на базу VT1.
После того как С1 разрядится через включенный параллельно ему участок потенциометра R3, VT1 откроется и зашунтирует цепочку последовательно включенных VS1-HL1-VD2. Тиристор отключается, размыкая цепь питания нагрузки и цепь управления транзистора VT1. Схема возвращается в исходное состояние.
Время экспозиции можно устанавливать от 0 (при полностью введенной ручке потенциометра R3) до 40 с. В качестве нагрузки используется герконовое реле К1 на рабочее напряжение 5 В (РМК 11105) сопротивлением 350 Ом. Светодиод HL1 индицирует включенное состояние устройства. Максимальный ток нагрузки не должен превышать 20 мА.
Автор: М. Шустов, г.Томск; Публикация: radioradar.net
Смотрите другие статьи раздела Часы, таймеры, реле, коммутаторы нагрузки.
Читайте и пишите полезные комментарии к этой статье.
<< Назад
Последние новости науки и техники, новинки электроники:
Оптимальная продолжительность сна
12.11.2025
Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам.
Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта.
Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>
Дефицит кислорода усиливает выброс закиси азота
12.11.2025
Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски.
Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота.
В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>
Омега-3 помогают молодым кораллам выживать
11.11.2025
Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов.
В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам.
Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>
Случайная новость из Архива Марс меняет структуру околоземных астероидов
27.11.2013
Долгое время астрономы не могли ответить на вопрос: почему цвет поверхности большинства астероидов сдвинут в красную область спектра и отличается от остатков астероидов, которые рухнули на Землю?
В 2010 году профессор планетарных наук в Массачусетском технологическом институте Ричард Бинзел выдвинул гипотезу, объясняющую это явление. Бинзен считает, что астероиды, которые вращаются в поясе астероидов между Марсом и Юпитером, подвергаются воздействию космического излучения, которое меняет химический состав поверхности и заставляет ее краснеть. В свою очередь, астероиды, которые приближаются к Земле, попадают под воздействие гравитации Земли и сотрясаются, в результате чего зерна грунта на поверхности астероида сдвигаются и обнажают более "свежие" породы. Когда эти астероиды подходят слишком близко к нашей планете, они разрушаются и падают на поверхность Земли. Таким образом, перед учеными предстают два типа астероидов: облученные "красные" старожилы космоса, и метеориты, попавшие к нам из астероидов, переживших "омолаживающее" сотрясение.
С 2010 года ученые считали, что близкие контакты с Землей играют ключевую роль в "омоложении" астероидов. Но теперь Бинзел и его коллега Франческа Де Мео обнаружили, что поверхность астероидов может меняться и под воздействием Марса. Команда ученых рассчитала орбиты 60 "обновленных" астероидов и обнаружила, что 10% из них никогда не пересекают орбиту Земли. Вместо этого они сближаются с Марсом, который, судя по всему, и "освежает" поверхность астероидов.
На первый взгляд, Марс не способен оказывать такое сильное воздействие на астероиды, ведь диаметр Марса составляет 0,53 диаметра Земли, а масса - 10,7% массы Земли. Следовательно, Марс оказывает гораздо более слабое гравитационное воздействие на окружающие небесные тела. Тем не менее, Марс занимает уникальное положение в Солнечной системе. Он находится в непосредственной близости от Пояса астероидов, что увеличивает шансы "перехвата" астероидов.
Ученые подозревали, что Марс может иметь отношение к изменению поверхности астероидов, и поэтому решили обратиться к базе данных Minor Planet Center Международного астрономического союза. База данных в настоящее время содержит данные наблюдений 300 000 астероидов и их орбит, причем 10 000 из них считаются околоземными астероидов.
|
Другие интересные новости:
▪ Беспилотный автомобиль от Nokia
▪ Плата расширения X-NUCLEO-IDS01A4
▪ Два типа смеха: от эволюции к современности
▪ Управляемый мозгом слуховой аппарат
▪ Космическая передача данных с помощью лазера
Лента новостей науки и техники, новинок электроники
Интересные материалы Бесплатной технической библиотеки:
▪ раздел сайта Сборка кубика Рубика. Подборка статей
▪ статья Нейрокомпьютер. История изобретения и производства
▪ статья Где покручивание указательным пальцем у виска означает, что человек думает? Подробный ответ
▪ статья Бухгалтер-кассир. Должностная инструкция
▪ статья Фотореле на МТХ-90. Энциклопедия радиоэлектроники и электротехники
▪ статья Медь присоединяется к серебру. Секрет фокуса
Оставьте свой комментарий к этой статье:
Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua
2000-2025