Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Широкодиапазонный функциональный генератор. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Измерительная техника

Комментарии к статье Комментарии к статье

Задумав построить для домашней лаборатории измерительный генератор, радиолюбители в последнее время все чаще останавливают свой выбор на замкнутой релаксационной системе, состоящей из интегратора и компаратора. Объясняется это тем, что такие генераторы, как правило, проще в изготовлении, чем генераторы синусоидального сигнала, а их возможности гораздо шире. Однако при использовании ОУ широко распространенных серий (К140, К153, К553 и т. п.) получить большую скорость нарастания выходного напряжения интегратора и малое время "отклика" компаратора не удается, поэтому верхняя граничная частота большинства описанных в радиолюбительской литературе генераторов не превышает 10...20 кГц.

Широкодиапазонный функциональный генератор
(нажмите для увеличения)

В предлагаемом вниманию радиолюбителей приборе в качестве интегратора применен ОУ К574УД1Б (скорость нарастания выходного напряжения - 50 В/мкс, частота единичного усиления - 10 МГц), а компаратор выполнен на элементах микросхемы К155ЛА3 (время задержки - не более 30...40 нс). Это позволило расширить диапазон генерируемых частот до 1 МГц. Генератор вырабатывает напряжения прямоугольной, треугольной и синусоидальной форм, а также прямоугольные импульсы с уровнями ТТЛ и регулируемой длительностью от 0,5 мкс до 1200 мс. Выходное напряжение можно изменять в пределах 0...1 В. Коэффициент гармоник синусоидального сигнала - не более 1,5 %. Выходное сопротивление генератора - около 100 Ом.

Кроме уже названных интегратора (ОУ DA1) и компаратора (DD1), генератор включает в себя эмиттерный повторитель (VT1), формирователь синусоидального напряжения (VT2), масштабный усилитель (ОУ DA2, VT7), буферный каскад (VT4, DD2.1). RS-триггер (DD2.2, DD2.3). два одновибратора (DD3.1, DD3.2) и три транзисторных стабилизатора напряжения (VT3, VT5, VT6). Питается прибор от двуполярного стабилизированного источника напряжения ± 12 В. Ток, потребляемый от источника положительного напряжения,- не более 180 мА, отрицательного - 80 мА.

Прямоугольные импульсы с выхода компаратора (вывод 6 элемента DD1.2) поступают на инвертирующий вход интегратора на ОУ DA1. На выходе последнего формируется напряжение треугольной формы, которое через эмиттерный повторитель на транзисторе VT1 управляет компаратором. Переключателем SA1 частоту колебаний изменяют грубо, переменным резистором R1 - плавно. Подстроечный резистор R16 служит для установки амплитуды, а R17 - постоянной составляющей треугольного напряжения. Требуемый режим работы компаратора обеспечивается подачей на вывод 7 (общий) микросхемы DD1 напряжения -2 В с выхода стабилизатора на транзисторе VT3, а на вывод 14 -- напряжения +3,2 В с выхода стабилизатора на транзисторе VT5.

Колебания треугольной формы с эмиттера транзистора VT1 поступают в каскад, выполненный на полевом транзисторе VT2, где из них формируется синусоидальное напряжение. С истока транзистора синусоидальный сигнал подводится к секции переключателя SA2.2. Сюда же - через резисторы R18 и R22 - подаются напряжения треугольной и прямоугольной форм, снимаемые соответственно с эмиттера транзистора VT1 и выхода элемента DD1.2 компаратора. Сигнал, выбранный переключателем SA2 (его амплитуду регулируют переменным резистором R27), усиливается масштабным усилителем, выполненным на ОУ DA2 и транзисторе VT7, и поступает на ступенчатый аттенюатор - делитель напряжения R24-R26, а с него - через секцию переключателя SA3.2 и резистор R32 - на выходное гнездо XS1.

Прямоугольные импульсы с уровнем ТТЛ поступают на секцию переключателя SA3.2 с выхода буферного каскада, собранного на транзисторе VT4 и элементе DD2.1. Они же запускают одновибратор DD3.1, подключаемый к выходу прибора во втором и третьем (сверху) положениях переключателя. Длительность импульсов регулируют коммутацией конденсаторов С9--С12 и изменением сопротивления переменного резистора R3 времязадающей цепи.

Второй одновибратор микросхемы DD3 использован в формирователе одиночных импульсов (соединяется с выходом прибора в четвертом и пятом положениях переключателя SA3). При нажатии на кнопку SB1 RS-триггер на элементах DD2.2, DD2.3 изменяет свое состояние и положительным перепадом выходного напряжения запускает одновибратор DD3.2. Как и в предыдущем случае, требуемую длительность импульса устанавливают переключателем SA2.1 и резистором R3.

В приборе предусмотрена возможность использования в качестве выходного сигнала перепадов напряжения на выходах RS-триггера при нажатии на кнопку SB1 (шестое и седьмое положения переключателя SA3).

Налаживание генератора начинают с балансировки масштабного усилителя (DA2, VT7). Для этого переключатели SA1-SA3 устанавливают соответственно в положения "0,1...1 кГц", "30...1200 мс" и "1:1", включают питание и подстроечным резистором R31 добиваются нулевого напряжения на выходном гнезде XS1. Затем подстроечным резистором R19 устанавливают на выводе 7 микросхемы DD1 напряжение -2 В. а подстроечным резистором R33 - напряжение +3,2 В на ее выводе 14. После этого к выходу прибора подключают осциллограф, переводят переключатель SA2 в верхнее (по схеме) положение и теми же подстроечными резисторами R19, R33 добиваются того, чтобы прямоугольные импульсы на экране осциллографа стали симметричными (относительно уровня 0).

Далее переключатель SA2 устанавливают во второе (сверху) положение и, переместив движок резистора R1 в нижнее (по схеме) положение, подстроечным резистором R6 симметрируют сигнал треугольной формы. Симметрия последнего не должна нарушаться при переводе движка резистора R1 в другое крайнее положение. Отсутствия постоянной составляющей этого сигнала добиваются подстроечным резистором R17.

Нелинейные искажения синусоидального напряжения сводят к минимуму подстроечным резистором R16, установив переключатель SA2 в третье положение.

После этого движок переменного резистора R27 переводят в верхнее (по схеме) положение и подбирают резистор R29 до получения на выходе прибора напряжения 1В. Таких же напряжений прямоугольной и треугольной форм добиваются подбором резисторов R22 и R18.

В заключение подбирают конденсатор С8 до получения верхней граничной частоты генерируемых колебаний, равной 1 МГц.

Следует отметить, что при желании максимальную частоту генератора можно повысить до 2...2,5 МГц. Для этого конденсатор С8 следует исключить, а сопротивление резистора R16 увеличить до 6,8...10 кОм. Правда, при этом возникнут трудности с получением синусоидального сигнала, так как с увеличением сопротивления указанного резистора уменьшится амплитуда треугольного напряжения. Выход из положения - введение усилителя с линейной (в полосе частот 0...3 МГц) АЧХ между интегратором и формирователем синусоидального напряжения.

А. Ишутинов

Смотрите другие статьи раздела Измерительная техника.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 12.11.2025

Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам. Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта. Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>

Дефицит кислорода усиливает выброс закиси азота 12.11.2025

Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски. Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота. В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Случайная новость из Архива

Присоска из капли воды 22.11.2005

Американский химик придумал, как сделать присоску из капли воды.

"Однажды я услыхал от коллеги-энтомолога, что пальмовый долгоносик, спасаясь от врага, выделяет 120 тысяч микронных капелек маслянистого агента, которые столь прочно соединяются силами поверхностного натяжения с листом, что никто не может оторвать от него жука. Это известие меня настолько поразило, что я решал создать нечто подобное в лаборатории. И план вполне удался", - говорит профессор Корнеллского университета Пауль Стин.

Созданное им устройство состоит из пористой пластинки, электродов и батарейки в 5 В. На пластинку наносят миллиметровую каплю воды, включают электрический ток, и растворенные в воде ионы втягивают каплю в каналы пор. В результате с другой стороны получаются микронные капельки. Они-то и прилепляют пластинку к любой поверхности. Если же электрический ток пойдет в другую сторону, то за секунду капельки втянутся и пластинка отлепится.

"Наше устройство вполне поддается масштабированию, и с его помощью можно создавать манипуляторы для захвата микронных, а то и наноразмерных деталек", - считает профессор Стин.

Другие интересные новости:

▪ Биоразлагаемые шлепанцы из водорослей

▪ Самая маленькая микросхема флэш-памяти плотностью 128 Гбит

▪ Раскрытие генетической истории неандертальцев

▪ Двухколесный электромобиль

▪ Робот-охранник с сетью

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Дом, приусадебное хозяйство, хобби. Подборка статей

▪ статья Стратегия и тактика поведения при нападении. Основы безопасной жизнедеятельности

▪ статья Как возникает цветная слепота? Подробный ответ

▪ статья Мастер строительных и монтажных работ. Должностная инструкция

▪ статья Блок управления синтезатором частоты УКВ радиоприемника. Энциклопедия радиоэлектроники и электротехники

▪ статья Предварительный усилитель с темброблоком. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025