Бесплатная техническая библиотека
Поиск неисправных элементов с помощью термометра. Энциклопедия радиоэлектроники и электротехники

Энциклопедия радиоэлектроники и электротехники / Измерительная техника
Комментарии к статье
Задачу поиска неисправного малогабаритного радиоэлемента, например конденсатора, установленного в цепи питания, который имеет значительную утечку по току (десятки и сотни миллиампер), нельзя назвать очень сложной. Такой элемент можно найти, контролируя его температуру пальцем. Правда, этот способ работает, если неисправный элемент "пробит" основательно и его сопротивление утечки составляет единицы или десятки ом. А как быть, если это сопротивление - единицы килоом и ток значительно меньше?
Такая задача возникла при ремонте неисправного планшетного компьютера Samsung TAB 7.7 P6800, который в выключенном состоянии полностью разряжал аккумуляторную батарею емкостью 5 Ач примерно за три недели. Именно в выключенном, а не в спящем состоянии. Внешнее состояние планшета было очень хорошее - он не падал, не заливался жидкостью, аккумулятор был "свежий", а корпус не вскрывали. Перепробовав все возможные и доступные способы устранения неисправности - обновление ПО, программное отключение радиомодулей, извлечение SD-карты, полный сброс и т. п., я пришел к выводу, что неисправность нужно искать в "железе" на одной из плат. Скорее всего, повышенный потребляемый ток вызывает какой-то элемент с малым сопротивлением утечки, установленный на основной плате. Вопрос - как найти этот элемент? Очевидно, что он должен нагреваться и его температура хоть немного, но превышает температуру окружающей среды и соседних элементов.
В Интернете есть информация об успешном и быстром поиске таких элементов по нагреву с помощью тепловизора. Но у последнего есть существенный недостаток - очень высокая цена. Дистанционные термометры также малопригодны для этой цели, так как измеряют температуру на некоторой площади, а не в точке. Не подходят и WEB-камеры даже с удаленным инфракрасным фильтром, так как их максимум чувствительности лежит совсем в другом диапазоне.
В итоге выручил мультиметр с функцией измерения температуры. В наличии оказался мультиметр Mastech MS8209 с термопарой в комплекте. Термопара - шар диаметром примерно 1 мм. Ее сопротивление при комнатной температуре - около 14 Ом. Вполне подошел бы и любой другой термометр с разрешающей способностью не хуже 0,1 оС. Почему бы не использовать вместо тепловизора такой термометр? Еще, конечно же, потребуется немного терпения. Главное, чтобы размеры термодатчика были как можно меньше, что ускоряет процесс и позволяет измерять температуру малогабаритных элементов. Для лучшей теплопередачи между элементом и термопарой на последнюю было нанесено небольшое количество термопасты КПТ-8.
Поиск заключался в поочередной проверке всех "подозрительных" элементов на повышенную температуру при подключенном аккумуляторе. В моем случае неисправным оказался керамический конденсатор c позиционным обозначением C504 (размеры примерно 0,5x1 мм) номинальной емкостью 10 мкФ, установленный в цепи питания и размещенный рядом с контроллером питания - микросхемой MAX8997. На всех элементах температура была 30± 1 оС, а этого конденсатора - 33 оС, что и позволило его "вычислить". Примерное время измерения на один элемент - несколько секунд. Всего на поиск и перепроверку результатов ушло около 20 мин. Неисправный конденсатор был демонтирован с платы и измерения омметром показали, что его сопротивление - около 10 кОм. После замены его на исправный ток потребления планшетного компьютера в выключенном состоянии снизился с 12 до 0,5 мА.
Хотелось бы добавить, что такая методика позволяет в ряде случаев производить ремонт даже при отсутствии принципиальной схемы и без измерения параметров неисправных элементов, например, при наличии двух одинаковых печатных плат с разными неисправностями, когда требуется собрать одну рабочую плату.
Автор: Е. Бирюков
Смотрите другие статьи раздела Измерительная техника.
Читайте и пишите полезные комментарии к этой статье.
<< Назад
Последние новости науки и техники, новинки электроники:
Хорошо управляемые луга могут компенсировать выбросы от скота
15.02.2026
Животноводство, особенно разведение крупного рогатого скота, часто обвиняют в значительном вкладе в глобальное потепление из-за мощного парникового газа - метана, который выделяется при пищеварении у жвачных животных. Это вызывает острые политические споры и призывы к сокращению потребления мяса. Однако ученые напоминают, что полная картина климатического воздействия отрасли не ограничивается только выбросами от животных: огромную роль играет окружающая экосистема - пастбища, почва и растительность, которые способны активно поглощать углекислый газ из атмосферы.
Исследователи из Университета Небраски-Линкольна решили глубже изучить этот баланс. Группа под руководством профессора Галена Эриксона сосредоточилась на том, как правильно организованные пастбища накапливают углерод в растениях и грунте благодаря естественным процессам, стимулируемым выпасом скота. Ученые подчеркивают, что при достаточном уровне осадков и грамотном управлении такие луга превращаются в мощные природные погло ...>>
NASA тестирует инновационную технологию крыла
15.02.2026
Коммерческая авиация ежегодно расходует колоссальные объемы керосина, что сказывается не только на бюджете авиакомпаний, но и на состоянии окружающей среды. В 2024 году глобальные затраты на авиационное топливо достигли 291 миллиарда долларов, и эта сумма продолжает расти. Чтобы справиться с этими вызовами, NASA активно работает над технологиями, способными заметно повысить аэродинамическую эффективность самолетов. Одним из самых перспективных направлений стало создание специальной конструкции крыла, которая максимизирует естественный ламинарный поток воздуха и минимизирует сопротивление.
В январе 2026 года специалисты NASA Armstrong Flight Research Center успешно провели важный этап наземных испытаний концепции Crossflow Attenuated Natural Laminar Flow (CATNLF). Для эксперимента под фюзеляж исследовательского самолета F-15B закрепили вертикально ориентированную масштабную модель высотой около 0,9 м (3 фута), напоминающую узкий киль. Такая компоновка позволила подвергнуть прототип р ...>>
Забота о внуках очень полезна для здоровья мозга
14.02.2026
Общение между поколениями приносит радость всей семье, но мало кто задумывается, насколько активно бабушки и дедушки, заботящиеся о внуках, поддерживают свою умственную форму. Регулярное взаимодействие с детьми стимулирует мозг пожилых людей, помогая сохранять память, скорость мышления и общую когнитивную активность.
Новые научные данные подтверждают, что такая добровольная помощь не только важна для общества, но и может замедлять возрастные изменения в мозге.
Исследователи из Тилбургского университета в Нидерландах провели анализ, чтобы понять, приносит ли уход за внуками реальную пользу здоровью пожилых людей. Ведущий автор работы Флавия Черечес отметила, что многие бабушки и дедушки регулярно присматривают за детьми, и оставался открытым вопрос, насколько это положительно сказывается на их собственном благополучии, особенно в плане когнитивных функций.
Ученые поставили цель выяснить, способен ли регулярный уход за внуками замедлить снижение памяти и других умственных способ ...>>
Случайная новость из Архива Двигатель на сухом льде
16.03.2015
Исследователи придумали, как снабдить энергией первых колонизаторов Марса: на планете много сухого льда, который можно использовать для получения доступной энергии.
Вы наверняка замечали, как капля воды, попав на горячую сковородку, начинает кататься по поверхности. Казалось бы, температура сковородки намного выше температуры кипения воды, и капля должна бы сразу испариться, но она еще какое-то время "живет". Этот эффект впервые описал Иоганн Лейденфрост в 1756 году. Почему капля не испаряется моментально? Все дело в прослойке пара, которая образуется в месте контакта капли и раскаленной поверхности. Часть капли превращается в пар, который приподнимает каплю над поверхностью, не давая оставшейся жидкости моментально испариться. В результате капля бегает по сковородке довольно продолжительное время.
Эффект Лейденфроста проявляется не только на сковородках. Например, если очень быстро погрузить палец в стакан с жидким азотом и быстро вытащить его обратно, то, как ни странно, палец не замерзнет и не отвалится, хотя температура жидкого азота -196°С. Происходит так из-за того, что жидкий азот начинает кипеть при контакте с теплой кожей, на которой образуется защитный слой из уже газообразного азота. А газы остывают и нагреваются намного медленнее жидкостей, поэтому палец безрассудного экспериментатора не успевает замерзнуть. Правда все равно есть риск получить ожог, так что ни в коем случае не проверяйте эффект Лейденфроста на себе. Еще более экстремальный и намного более опасный трюк заключается в опускании мокрой руки в емкость с жидким металлом - вода на поверхности руки мгновенно вскипает и на доли секунды образует защитную прослойку, между кожей и расплавленным металлом.
Фокусы фокусами, но как получить из этого феномена реальную пользу? Исследователи из Нортумбрийского университета Великобритании сделали прототип двигателя, который может работать куске сухого льда. В основе конструкции лежит тот самый эффект Лейденфроста. Мы помним, что капля жидкости бегает по раскаленной поверхности. Точно также ведет себя кусок сухого льда, если его бросить в воду. Сухой лед уникален тем, что он при нагревании из твердой фазы превращается сразу в газ, минуя жидкую фазу. Вопрос весь в том, как направить его энергию в полезное русло. Инженеры уже давно разработали технологию, позволяющую превратить энергию пара в механическую энергию: в газотурбинном двигателе струя пара или газа ударяет в поверхность лопаток турбины, которая начинает вращаться. Но в нашем случае исследователи пошли другим путем.
Они сделали нагреваемую поверхность в форме диска, с профилем, похожим на лопасти турбины. Теперь, если на такую разогретую поверхность поместить каплю воды, то образующийся в месте контакта пар будет не только поддерживать каплю на весу, но и будет толкать ее в определенном направлении. Капля будет бегать по кругу, пока не испарится. А что произойдет, если на такую нагретую поверхность положить диск из сухого льда? Испаряющаяся двуокись углерода начнет раскручивать диск, притом геометрия поверхности не даст ему сойти с оси, потоки газа будут возвращать диск к центру. Теперь если на диске из сухого льда закрепить магниты, и поместить всю конструкцию внутрь проводящего контура, то получится самый настоящий электрогенератор, в котором нет никаких трущихся частей, а значит и потерь на трение. Авторы изобретения разместили на сайте видео того, как все это работает.
Хорошо, прототип двигателя работает, но где брать для него топливо? Сухой лед в природе не встречается. Вот тут исследователи замахнулись, ни много ни мало, на генераторы для будущих колонизаторов Марса или других планет. Многие футурологи уверены, что рано или поздно у человечества не останется выбора кроме как заселять ближайшие к нам планеты.
Сейчас всерьез обсуждаются и разрабатываются программы по отправке экспедиции на красную планету. Членам экспедиции придется обустраивать там свою жизнь, и одной из главных проблем будет поиск источников энергии. Дело в том, что на Марсе углекислый газ часто встречается в твердой форме, то есть в виде сухого льда. И его можно использовать как энергетический ресурс. Уникальность изобретенного двигателя в простоте конструкции - в нем практически нет никаких заменяемых частей. А когда ближайший магазин находится за 50 с лишним миллионов километров, вопрос надежности оборудования встает на одно из первых мест.
|
Другие интересные новости:
▪ Китай подогреет Японию
▪ История африканской пыли
▪ 20-нанометровые чипы DRAM LPDDR3 плотностью 6 Гбит
▪ Распознавание лиц для кредитования в Сбербанке
▪ Кафе с дронами-официантами
Лента новостей науки и техники, новинок электроники
Интересные материалы Бесплатной технической библиотеки:
▪ раздел сайта Предварительные усилители. Подборка статей
▪ статья Потерпеть фиаско. Крылатое выражение
▪ статья Почему вода остается на коже вышедшего из нее человека, а не скатывается вниз? Подробный ответ
▪ статья Работа в кабинете биологии. Типовая инструкция по охране труда
▪ статья Электронный переключатель антенны. Энциклопедия радиоэлектроники и электротехники
▪ статья Сквозь целые веревки. Секрет фокуса
Оставьте свой комментарий к этой статье:
Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua
2000-2026