Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Малогабаритный индикатор радиоактивности. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Измерительная техника

Комментарии к статье Комментарии к статье

Описываемый индикатор был разработан из подручных деталей в 1986 г после Чернобыля. Целью было сделать малогабаритный несложный, но достаточно чувствительный индикатор загрязнения окружающей среды и продуктов питания. Известно, что человек постоянно подвергается радиоактивному облучению, как космическому, так и земному, источники которого - газ радон, выделяющийся из земной коры, различные радиоактивные минералы, находящиеся в почве, строительных материалах, часах и приборах со светящимися стрелками и циферблатами, особенно выпущенные в первой половине прошлого века, когда в них использовался радий. Применяются источники радиоактивного излучения и сегодня, например, в датчиках задымления. Подробно эта проблема изложена в [1].

Многие самодельные индикаторы радиоактивности, например, описанный в [2], позволяют заметить только довольно значительное превышение уровня излучения над естественным фоном, который крайне неравномерен. При малом уровне облучения вспышки светового индикатора или щелчки звукового происходят со случайными интервалами, от долей секунды до единиц и даже десятков секунд. Поэтому при их подсчете "в уме" трудно не сбиться и недооценить или переоценить опасность наблюдаемого уровня облучения. Для достоверности приходится повторять процедуру несколько раз, точно соблюдая по секундомеру ее продолжительность.

Правда, незначительное превышение фона практически безопасно для человека при внешнем воздействии. Однако при попадании радиоактивного вещества внутрь картина резко меняется. Особенно вредны альфа-частицы, излучаемые таким веществом, попавшим, например, в легкие с пылью. Они интенсивно разрушают окружающие ткани.

Предлагаемый индикатор способен зафиксировать очень небольшие превышения фона. Он позволил, например, обнаружить радиоактивное загрязнение некоторых образцов чая, сухого травяного сбора и сгущенного молока, которое не удавалось определить, подсчитывая вспышки светодиода.

Схема индикатора приведена на рисунке. Он состоит из источника высокого напряжения, датчика радиоактивных частиц (счетчика Гейгера), счетчика импульсов, расширителя импульсов, таймера и индикаторов на светодиодах.

Малогабаритный индикатор радиоактивности
Схема индикатора радиоактивности (нажмите для увеличения)

В приборе применен счетчик Гейгера СБТ-11 (BD1), поскольку из всех малогабаритных, имевшихся у меня, только он благодаря тонкой слюде (20...25 мкм), закрывающей чувствительное окно, способен регистрировать частицы с малой энергией.

Источник высокого напряжения для питания счетчика Гейгера собран по схеме блокинг-генератора на транзисторе VT1, импульсном трансформаторе T1 и выпрямителе с удвоением напряжения на диодах VD2, VD3 и конденсаторах C3, C4.

Возникающие в счетчике Гейгера при прохождении через него радиоактивных частиц или квантов гамма-излучения импульсы тока вызывают импульсы напряжения на резисторе R5. Диод VD4 ограничивает амплитуду этих импульсов. Они поступают на вход 10 счетчика DD1, а через диод VD5 - на расширитель импульсов на полевом транзисторе VT2, вызывая хорошо заметные вспышки светодиода HL1. Значительное увеличение средней частоты этих вспышек сигнализирует об опасном уровне радиоактивного излучения.

На микросхеме К176ИЕ5 (DD1) реализованы два узла: счетчик импульсов, формируемых счетчиком Гейгера, и таймер. После включения напряжения питания счетчики микросхемы DD1 устанавливаются в нулевое состояние импульсом, формируемым на ее входе R при зарядке конденсатора C7. Затем начинается раздельный подсчет импульсов, поступающих на вход 10, и импульсов внутреннего генератора микросхемы, частотозадающие элементы которого - конденсаторы C8 и С9 и резисторы R12 (подстроечный) и R13.

Генератор вместе со вторым счетчиком микросхемы DD1 образует таймер, признаком истечения отсчитываемого которым интервала времени служит включение светодиода HL2, соединенного с выходом 9 микросхемы.

Светодиод HL3, соединенный с выходом 15 первого счетчика, включается, когда в этом счетчике накоплено более 128 импульсов счетчика Гейгера. При нормальном фоновом уровне излучения светодиод HL2 должен включиться раньше, чем HL3, а при его превышении - наоборот. Этого добиваются, регулируя подстроечным резистором R12 частоту генератора.

Чем меньше промежуток времени между включением индикатора переключателем SA1 и зажиганием светодиода HL3, тем интенсивнее излучение. При большой его интенсивности светодиод HL3 мигает, причем частота мигания растет пропорционально интенсивности, а затем вспышки сливаются в непрерывное свечение. Резистор R9 служит для полной разрядки конденсатора C5 при выключенном питании.

Индикатор собран в металлическом корпусе размерами 120x40x30 мм, все детали расположены на монтажной плате. Для установки счетчика Гейгера СБМ-11 предусмотрена обычная панель для семиштырьковой пальчиковой радиолампы. Чувствительное окно счетчика прикрывают откидной защитной крышкой. Выключатель и светодиоды расположены в торце корпуса. Питается индикатор от батареи "Крона", также находящейся внутри его корпуса.

Импульсный трансформатор T1 намотан на кольце типоразмера K17,5x8,2x5 из феррита 2000НМ. Обмотка I - 8 витков провода ПЭВ-2 диаметром 0,3 мм, обмотка II - 3 витка такого же провода, а обмотка III - 250 витков провода ПЭВ-2 диаметром 0,12 мм. Обмотку III наматывают на ферритовое кольцо первой. Она должна быть хорошо изолирована (например, фторопластовой лентой) от кольца и от намотанных поверх нее обмоток I и II. Необходимо строго соблюдать указанную на схеме фазировку обмоток I и II. Если блокинг-генератор не возбуждается, следует поменять местами выводы одной из этих обмоток.

Диоды КД510А можно заменить любыми импульсными, например КД522Б. Резистор R6 - КИМ-0,125 или импортный, подстроечный резистор R12 - СП-38а, остальные - МЛТ-0,125. Конденсаторы C3 и C4 - керамические трубчатые КТ-1 группы Н70, C5 -любой оксидный, остальные конденсаторы - керамические или пленочные. Светодиоды, указанные на схеме, можно заменить современными повышенной яркости. Переключатель SA1 - движковый ПД9-1.

Налаживание индикатора сводится к установке высокого напряжения 390 В (допустимые пределы 320...460 В) подбором резисторов R1 и R2 и установке времени измерения подстроечным резистором R12. Измерять высокое напряжение следует вольтметром с высоким входным сопротивлением - 10 МОм и более.

Время измерения должно быть таким, чтобы в отсутствие вблизи прибора каких-либо источников излучения (кроме естественного фона) светодиод HL2 включался чуть раньше, чем HL3. Необходимо учитывать, что фон непостоянен, поэтому эту регулировку придется производить неоднократно.

В режиме счета индикатор потребляет ток 0,8...0,9 мА.

Литература

  1. Радиация. Дозы, эффекты, риск. Пер. с англ. Ю. А. Банникова. - М.: Мир, 1990.
  2. Нечаев И. Индикатор радиоактивности. - Радио, 2014, № 10, с. 35, 36.

Автор: Г. Закоморный

Смотрите другие статьи раздела Измерительная техника.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Почтовый космический корабль Arc 03.10.2025

Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение. Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом. Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>

Лазерное обогащение урана 02.10.2025

Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана. Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций. GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>

Случайная новость из Архива

Джинсы с карманами для смартфона и зарядной батареи 12.08.2015

Ношение смартфона в заднем кармане джинсов является привычным для многих пользователей. Эта привычка может привести к повреждению не только смартфона, но и джинсов. Компания Joe's Jeans предложила владельцам мобильных устройств новый тип джинсов со специальным карманом для имеющегося смартфона. Следует отметить, что размеры этого кармана рассчитаны на iPhone, но, в принципе, в нём можно носить любой смартфон с похожими габаритами.

Специальный карман находится чуть выше и правее заднего правого бокового кармана джинсов. Он размещён таким образом, чтобы предохранить смартфон от возможного контакта с твёрдыми поверхностями.
Помимо специального кармана для смартфона, у джинсов Joe's Jeans также имеется карман для портативной батареи. Идея заключается в том, что, разместив смартфон в специальный карман, его владелец, возможно, захочет подзарядить мобильное устройство на ходу, подсоединив его к батарее с помощью короткого шнура.

Джинсы Joe's Jeans предназначены для женщин, хотя вызывает сомнение, что кому-то из модниц понравится подобное изделие с аккумулятором. Как сообщается, портативная батарея позволит зарядить смартфон iPhone 5/5s/5c с 0 до 100 % или аккумулятор iPhone 6 до 85 % ёмкости.

Стоимость джинсов без аккумулятора - $189.

Другие интересные новости:

▪ Видеоигры как способ улучшения психического здоровья

▪ Твердотельный накопитель IRDM PRO GEN 5

▪ Изогнутый монитор Samsung S27D590C

▪ Марсианский грунт - защита от радиации

▪ Кошек нельзя перекармливать

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Микроконтроллеры. Подборка статей

▪ статья Наркомания как общественное явление, ее истоки и факторы распространения. Основы безопасной жизнедеятельности

▪ В чем специфика Италия в IХ-ХI вв.? Подробный ответ

▪ статья Инженер-регулировщик радиоэлектронной аппаратуры и приборов. Должностная инструкция

▪ статья Генератор качающейся частоты. Энциклопедия радиоэлектроники и электротехники

▪ статья Блок питания для Ethernet коммутатора D-Link DES-1005D. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025