Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Малогабаритный индикатор радиоактивности. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Измерительная техника

Комментарии к статье Комментарии к статье

Описываемый индикатор был разработан из подручных деталей в 1986 г после Чернобыля. Целью было сделать малогабаритный несложный, но достаточно чувствительный индикатор загрязнения окружающей среды и продуктов питания. Известно, что человек постоянно подвергается радиоактивному облучению, как космическому, так и земному, источники которого - газ радон, выделяющийся из земной коры, различные радиоактивные минералы, находящиеся в почве, строительных материалах, часах и приборах со светящимися стрелками и циферблатами, особенно выпущенные в первой половине прошлого века, когда в них использовался радий. Применяются источники радиоактивного излучения и сегодня, например, в датчиках задымления. Подробно эта проблема изложена в [1].

Многие самодельные индикаторы радиоактивности, например, описанный в [2], позволяют заметить только довольно значительное превышение уровня излучения над естественным фоном, который крайне неравномерен. При малом уровне облучения вспышки светового индикатора или щелчки звукового происходят со случайными интервалами, от долей секунды до единиц и даже десятков секунд. Поэтому при их подсчете "в уме" трудно не сбиться и недооценить или переоценить опасность наблюдаемого уровня облучения. Для достоверности приходится повторять процедуру несколько раз, точно соблюдая по секундомеру ее продолжительность.

Правда, незначительное превышение фона практически безопасно для человека при внешнем воздействии. Однако при попадании радиоактивного вещества внутрь картина резко меняется. Особенно вредны альфа-частицы, излучаемые таким веществом, попавшим, например, в легкие с пылью. Они интенсивно разрушают окружающие ткани.

Предлагаемый индикатор способен зафиксировать очень небольшие превышения фона. Он позволил, например, обнаружить радиоактивное загрязнение некоторых образцов чая, сухого травяного сбора и сгущенного молока, которое не удавалось определить, подсчитывая вспышки светодиода.

Схема индикатора приведена на рисунке. Он состоит из источника высокого напряжения, датчика радиоактивных частиц (счетчика Гейгера), счетчика импульсов, расширителя импульсов, таймера и индикаторов на светодиодах.

Малогабаритный индикатор радиоактивности
Схема индикатора радиоактивности (нажмите для увеличения)

В приборе применен счетчик Гейгера СБТ-11 (BD1), поскольку из всех малогабаритных, имевшихся у меня, только он благодаря тонкой слюде (20...25 мкм), закрывающей чувствительное окно, способен регистрировать частицы с малой энергией.

Источник высокого напряжения для питания счетчика Гейгера собран по схеме блокинг-генератора на транзисторе VT1, импульсном трансформаторе T1 и выпрямителе с удвоением напряжения на диодах VD2, VD3 и конденсаторах C3, C4.

Возникающие в счетчике Гейгера при прохождении через него радиоактивных частиц или квантов гамма-излучения импульсы тока вызывают импульсы напряжения на резисторе R5. Диод VD4 ограничивает амплитуду этих импульсов. Они поступают на вход 10 счетчика DD1, а через диод VD5 - на расширитель импульсов на полевом транзисторе VT2, вызывая хорошо заметные вспышки светодиода HL1. Значительное увеличение средней частоты этих вспышек сигнализирует об опасном уровне радиоактивного излучения.

На микросхеме К176ИЕ5 (DD1) реализованы два узла: счетчик импульсов, формируемых счетчиком Гейгера, и таймер. После включения напряжения питания счетчики микросхемы DD1 устанавливаются в нулевое состояние импульсом, формируемым на ее входе R при зарядке конденсатора C7. Затем начинается раздельный подсчет импульсов, поступающих на вход 10, и импульсов внутреннего генератора микросхемы, частотозадающие элементы которого - конденсаторы C8 и С9 и резисторы R12 (подстроечный) и R13.

Генератор вместе со вторым счетчиком микросхемы DD1 образует таймер, признаком истечения отсчитываемого которым интервала времени служит включение светодиода HL2, соединенного с выходом 9 микросхемы.

Светодиод HL3, соединенный с выходом 15 первого счетчика, включается, когда в этом счетчике накоплено более 128 импульсов счетчика Гейгера. При нормальном фоновом уровне излучения светодиод HL2 должен включиться раньше, чем HL3, а при его превышении - наоборот. Этого добиваются, регулируя подстроечным резистором R12 частоту генератора.

Чем меньше промежуток времени между включением индикатора переключателем SA1 и зажиганием светодиода HL3, тем интенсивнее излучение. При большой его интенсивности светодиод HL3 мигает, причем частота мигания растет пропорционально интенсивности, а затем вспышки сливаются в непрерывное свечение. Резистор R9 служит для полной разрядки конденсатора C5 при выключенном питании.

Индикатор собран в металлическом корпусе размерами 120x40x30 мм, все детали расположены на монтажной плате. Для установки счетчика Гейгера СБМ-11 предусмотрена обычная панель для семиштырьковой пальчиковой радиолампы. Чувствительное окно счетчика прикрывают откидной защитной крышкой. Выключатель и светодиоды расположены в торце корпуса. Питается индикатор от батареи "Крона", также находящейся внутри его корпуса.

Импульсный трансформатор T1 намотан на кольце типоразмера K17,5x8,2x5 из феррита 2000НМ. Обмотка I - 8 витков провода ПЭВ-2 диаметром 0,3 мм, обмотка II - 3 витка такого же провода, а обмотка III - 250 витков провода ПЭВ-2 диаметром 0,12 мм. Обмотку III наматывают на ферритовое кольцо первой. Она должна быть хорошо изолирована (например, фторопластовой лентой) от кольца и от намотанных поверх нее обмоток I и II. Необходимо строго соблюдать указанную на схеме фазировку обмоток I и II. Если блокинг-генератор не возбуждается, следует поменять местами выводы одной из этих обмоток.

Диоды КД510А можно заменить любыми импульсными, например КД522Б. Резистор R6 - КИМ-0,125 или импортный, подстроечный резистор R12 - СП-38а, остальные - МЛТ-0,125. Конденсаторы C3 и C4 - керамические трубчатые КТ-1 группы Н70, C5 -любой оксидный, остальные конденсаторы - керамические или пленочные. Светодиоды, указанные на схеме, можно заменить современными повышенной яркости. Переключатель SA1 - движковый ПД9-1.

Налаживание индикатора сводится к установке высокого напряжения 390 В (допустимые пределы 320...460 В) подбором резисторов R1 и R2 и установке времени измерения подстроечным резистором R12. Измерять высокое напряжение следует вольтметром с высоким входным сопротивлением - 10 МОм и более.

Время измерения должно быть таким, чтобы в отсутствие вблизи прибора каких-либо источников излучения (кроме естественного фона) светодиод HL2 включался чуть раньше, чем HL3. Необходимо учитывать, что фон непостоянен, поэтому эту регулировку придется производить неоднократно.

В режиме счета индикатор потребляет ток 0,8...0,9 мА.

Литература

  1. Радиация. Дозы, эффекты, риск. Пер. с англ. Ю. А. Банникова. - М.: Мир, 1990.
  2. Нечаев И. Индикатор радиоактивности. - Радио, 2014, № 10, с. 35, 36.

Автор: Г. Закоморный

Смотрите другие статьи раздела Измерительная техника.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Наушники Bowers & Wilkins Px8 S2 11.11.2025

Наушники премиум-класса становятся не только аксессуаром для прослушивания музыки, но и инструментом для профессиональной работы с аудио. Новый флагман британского бренда Bowers & Wilkins - модель Px8 S2 - демонстрирует, как эти аспекты можно объединить в одной беспроводной системе. Компания представила Px8 S2 как обновленную флагманскую модель в линейке, ориентированную на пользователей, которые ценят высокое качество звука, эффективное шумоподавление и премиальный дизайн. Производитель отмечает, что наушники сочетают передовые акустические решения с эргономикой для длительного использования. Каждое устройство оснащено 40-миллиметровыми динамиками с карбоновыми диффузорами и 24-битным цифровым процессором. По словам Bowers & Wilkins, это обеспечивает точное и детализированное воспроизведение звукового спектра, а также поддержку аудио высокого разрешения. Автоматическая оптимизация соединения с источником сигнала гарантирует стабильное и качественное звучание вне зависимо ...>>

Шимпанзе могут менять свои убеждения 10.11.2025

Понимание того, как формируются убеждения и принимаются решения, традиционно считалось уникальной способностью человека. Однако недавнее исследование показало, что шимпанзе обладают способностью пересматривать свои мнения на основе новых данных, демонстрируя уровень рациональности, который ранее считался исключительно человеческим. Психологи под руководством Ханны Шлейхауф из Утрехтского университета провели серию экспериментов, направленных на изучение метапознания у шимпанзе. Исследователи впервые наблюдали, как эти обезьяны могут взвешивать различные виды доказательств и корректировать свои решения при появлении более убедительной информации. Экспериментаторы рассматривали рациональность как способность формировать убеждение о мире на основе фактических данных. При поступлении новой информации разумное существо способно сравнивать старые и новые данные и изменять свое мнение, если новые доказательства оказываются более весомыми. Для экспериментов использовались шимпанзе из ...>>

Случайная новость из Архива

Суперпозиция электронного состояния изменила свойства тормозного излучения 28.03.2021

Физики рассмотрели влияние квантовой интерференции на спектральные и пространственные свойства тормозного излучения при рассеянии электронов на атомах и наноондуляторах. Их расчеты показали, что придание состояниям налетающих электронов суперпозиционной формы способно влиять на направленность и монохроматичность тормозного излучения.

Квантовая электродинамика (КЭД) - это наиболее успешный и точный раздел квантовой теории поля. Он описывает электромагнитное взаимодействие во всех его проявлениях и процессах, участниками которых являются в основном электроны, позитроны и фотоны.

Большинство КЭД-эффектов находят свое подтверждение в экспериментах по рассеянию частиц, будь то спектроскопия атомов или упругие столкновения. Начальные и конечные частицы при этом принято описывать состояниями с определенным импульсом, потому что, согласно квантовой механике, частица, которая достаточно долго летит без взаимодействия (например, в трубе спектрографа или в ускорителе), со временем стремится к такому состоянию. Это нашло свое отражение в том, что состояния с определенным импульсом лежат в основе вычислений, проводимых в КЭД.

Вместе с тем квантовая механика допускает состояния суперпозиции, в которых импульс частицы может быть неопределенным. Можно было бы ожидать, что суперпозиция состояний начальных частиц приведет к суперпозиции состояний конечных частиц и к соответствующим эффектам квантовой интерференции, однако такого никогда не наблюдалось в эксперименте. Причина этого в том, что интерференционные члены в сечении рассеяния зануляются из-за законов сохранения энергии и импульса.

Физики из Израиля, Сингапура и США при участии Томаса Кристенсена (Thomas Christensen) показали, что можно найти такой диапазон суперпозиционных состояний, при которых интерференционные члены останутся ненулевыми из-за одинакового баланса энергий и импульсов, и это повлияет на результат всего КЭД-процесса. Чтобы проверить свои догадки с помощью вычислений, они рассмотрели процесс тормозного излучения при рассеянии электрона на нейтральном атоме углерода и на наноондуляторе.

Другие интересные новости:

▪ Ночное освещение из живых растений

▪ Чего недостает генам человека

▪ Мониторы ASUS VX279H-J и VX239H-J

▪ Под поверхностью Марса обнаружен крупный водоем

▪ Простой способ добычи урана из морской воды

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Интересные факты. Подборка статей

▪ статья Демьянова уха. Крылатое выражение

▪ статья Какая обувная компания за каждую проданную пару туфель дарит еще одну пару детям из бедных семей? Подробный ответ

▪ статья Передвижение в горных районах. Советы туристу

▪ статья Экономическая эффективность систем солнечного теплоснабжения. Энциклопедия радиоэлектроники и электротехники

▪ статья Микросхемы стабилизаторов напряжений. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025