Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Малогабаритный индикатор радиоактивности. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Измерительная техника

Комментарии к статье Комментарии к статье

Описываемый индикатор был разработан из подручных деталей в 1986 г после Чернобыля. Целью было сделать малогабаритный несложный, но достаточно чувствительный индикатор загрязнения окружающей среды и продуктов питания. Известно, что человек постоянно подвергается радиоактивному облучению, как космическому, так и земному, источники которого - газ радон, выделяющийся из земной коры, различные радиоактивные минералы, находящиеся в почве, строительных материалах, часах и приборах со светящимися стрелками и циферблатами, особенно выпущенные в первой половине прошлого века, когда в них использовался радий. Применяются источники радиоактивного излучения и сегодня, например, в датчиках задымления. Подробно эта проблема изложена в [1].

Многие самодельные индикаторы радиоактивности, например, описанный в [2], позволяют заметить только довольно значительное превышение уровня излучения над естественным фоном, который крайне неравномерен. При малом уровне облучения вспышки светового индикатора или щелчки звукового происходят со случайными интервалами, от долей секунды до единиц и даже десятков секунд. Поэтому при их подсчете "в уме" трудно не сбиться и недооценить или переоценить опасность наблюдаемого уровня облучения. Для достоверности приходится повторять процедуру несколько раз, точно соблюдая по секундомеру ее продолжительность.

Правда, незначительное превышение фона практически безопасно для человека при внешнем воздействии. Однако при попадании радиоактивного вещества внутрь картина резко меняется. Особенно вредны альфа-частицы, излучаемые таким веществом, попавшим, например, в легкие с пылью. Они интенсивно разрушают окружающие ткани.

Предлагаемый индикатор способен зафиксировать очень небольшие превышения фона. Он позволил, например, обнаружить радиоактивное загрязнение некоторых образцов чая, сухого травяного сбора и сгущенного молока, которое не удавалось определить, подсчитывая вспышки светодиода.

Схема индикатора приведена на рисунке. Он состоит из источника высокого напряжения, датчика радиоактивных частиц (счетчика Гейгера), счетчика импульсов, расширителя импульсов, таймера и индикаторов на светодиодах.

Малогабаритный индикатор радиоактивности
Схема индикатора радиоактивности (нажмите для увеличения)

В приборе применен счетчик Гейгера СБТ-11 (BD1), поскольку из всех малогабаритных, имевшихся у меня, только он благодаря тонкой слюде (20...25 мкм), закрывающей чувствительное окно, способен регистрировать частицы с малой энергией.

Источник высокого напряжения для питания счетчика Гейгера собран по схеме блокинг-генератора на транзисторе VT1, импульсном трансформаторе T1 и выпрямителе с удвоением напряжения на диодах VD2, VD3 и конденсаторах C3, C4.

Возникающие в счетчике Гейгера при прохождении через него радиоактивных частиц или квантов гамма-излучения импульсы тока вызывают импульсы напряжения на резисторе R5. Диод VD4 ограничивает амплитуду этих импульсов. Они поступают на вход 10 счетчика DD1, а через диод VD5 - на расширитель импульсов на полевом транзисторе VT2, вызывая хорошо заметные вспышки светодиода HL1. Значительное увеличение средней частоты этих вспышек сигнализирует об опасном уровне радиоактивного излучения.

На микросхеме К176ИЕ5 (DD1) реализованы два узла: счетчик импульсов, формируемых счетчиком Гейгера, и таймер. После включения напряжения питания счетчики микросхемы DD1 устанавливаются в нулевое состояние импульсом, формируемым на ее входе R при зарядке конденсатора C7. Затем начинается раздельный подсчет импульсов, поступающих на вход 10, и импульсов внутреннего генератора микросхемы, частотозадающие элементы которого - конденсаторы C8 и С9 и резисторы R12 (подстроечный) и R13.

Генератор вместе со вторым счетчиком микросхемы DD1 образует таймер, признаком истечения отсчитываемого которым интервала времени служит включение светодиода HL2, соединенного с выходом 9 микросхемы.

Светодиод HL3, соединенный с выходом 15 первого счетчика, включается, когда в этом счетчике накоплено более 128 импульсов счетчика Гейгера. При нормальном фоновом уровне излучения светодиод HL2 должен включиться раньше, чем HL3, а при его превышении - наоборот. Этого добиваются, регулируя подстроечным резистором R12 частоту генератора.

Чем меньше промежуток времени между включением индикатора переключателем SA1 и зажиганием светодиода HL3, тем интенсивнее излучение. При большой его интенсивности светодиод HL3 мигает, причем частота мигания растет пропорционально интенсивности, а затем вспышки сливаются в непрерывное свечение. Резистор R9 служит для полной разрядки конденсатора C5 при выключенном питании.

Индикатор собран в металлическом корпусе размерами 120x40x30 мм, все детали расположены на монтажной плате. Для установки счетчика Гейгера СБМ-11 предусмотрена обычная панель для семиштырьковой пальчиковой радиолампы. Чувствительное окно счетчика прикрывают откидной защитной крышкой. Выключатель и светодиоды расположены в торце корпуса. Питается индикатор от батареи "Крона", также находящейся внутри его корпуса.

Импульсный трансформатор T1 намотан на кольце типоразмера K17,5x8,2x5 из феррита 2000НМ. Обмотка I - 8 витков провода ПЭВ-2 диаметром 0,3 мм, обмотка II - 3 витка такого же провода, а обмотка III - 250 витков провода ПЭВ-2 диаметром 0,12 мм. Обмотку III наматывают на ферритовое кольцо первой. Она должна быть хорошо изолирована (например, фторопластовой лентой) от кольца и от намотанных поверх нее обмоток I и II. Необходимо строго соблюдать указанную на схеме фазировку обмоток I и II. Если блокинг-генератор не возбуждается, следует поменять местами выводы одной из этих обмоток.

Диоды КД510А можно заменить любыми импульсными, например КД522Б. Резистор R6 - КИМ-0,125 или импортный, подстроечный резистор R12 - СП-38а, остальные - МЛТ-0,125. Конденсаторы C3 и C4 - керамические трубчатые КТ-1 группы Н70, C5 -любой оксидный, остальные конденсаторы - керамические или пленочные. Светодиоды, указанные на схеме, можно заменить современными повышенной яркости. Переключатель SA1 - движковый ПД9-1.

Налаживание индикатора сводится к установке высокого напряжения 390 В (допустимые пределы 320...460 В) подбором резисторов R1 и R2 и установке времени измерения подстроечным резистором R12. Измерять высокое напряжение следует вольтметром с высоким входным сопротивлением - 10 МОм и более.

Время измерения должно быть таким, чтобы в отсутствие вблизи прибора каких-либо источников излучения (кроме естественного фона) светодиод HL2 включался чуть раньше, чем HL3. Необходимо учитывать, что фон непостоянен, поэтому эту регулировку придется производить неоднократно.

В режиме счета индикатор потребляет ток 0,8...0,9 мА.

Литература

  1. Радиация. Дозы, эффекты, риск. Пер. с англ. Ю. А. Банникова. - М.: Мир, 1990.
  2. Нечаев И. Индикатор радиоактивности. - Радио, 2014, № 10, с. 35, 36.

Автор: Г. Закоморный

Смотрите другие статьи раздела Измерительная техника.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 12.11.2025

Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам. Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта. Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>

Дефицит кислорода усиливает выброс закиси азота 12.11.2025

Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски. Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота. В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Случайная новость из Архива

Банкомат просканирует ладонь 21.04.2012

В Японии решили использовать биометрические технологии в банкоматах, благодаря которым клиенты банка смогут получить доступ ко своему банковскому счету, просто просканировав ладонь, без необходимости использования пластиковых карт.

Стоит отметить, что подобные системы уже существуют и применяются в некоторых странах. Однако в отличие от новой технологии, старые банкоматы все еще требуют наличия банковской карты, а биометрическая технология выступает лишь в качестве дополнительной защиты средств клиента банка.

Для того чтобы получить возможность управлять средствами своего банковского счета, пользователю необходимо нанести личный визит в банк и предоставить о себе некоторую информацию (пока подобную функцию предоставляет только японский банк OTB). В свою очередь, чтобы, к примеру, снять деньги через биометрический банкомат, одного сканирования ладони будет недостаточно. Держатель счета должен будет ввести 4-значный PIN-код и дату своего рождения.

Другие интересные новости:

▪ Глобальное исследование пресной воды

▪ Астероидов стало меньше

▪ Наконец-то расшифровали женщину

▪ Пробка от вирусов

▪ Вертикальные солнечные панели

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Электрик в доме. Подборка статей

▪ статья Уважение и преданность - преданность и уважение. Крылатое выражение

▪ статья Что такое фэнтези? Подробный ответ

▪ статья Способы приготовления рыбы. Советы туристу

▪ статья Окрашивание лаков и политур. Простые рецепты и советы

▪ статья Электролиз в стакане. Химический опыт

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025