Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Прибор для определения диэлектрической проницаемости материалов. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Измерительная техника

Комментарии к статье Комментарии к статье

Прибор может быть полезным в радиолюбительской практике при оценке диэлектрической проницаемости образцов пластмасс, керамики, других изоляционных материалов, а также специалистам и коллекционерам при идентификации и систематизации образцов минералов. При разнообразии конструкций емкостного датчика можно существенно расширить возможности устройства.

Прибор предназначен для определения диэлектрической проницаемости пластмасс, минералов и керамики и идентификации их по этому параметру. Идея создания прибора и разработка датчика принадлежат канд. хим. наук Г. Г. Петржику. Устройство может найти применение у радиолюбителей и специалистов, занимающихся сбором, коллекционированием и обработкой минералов. Принцип определения диэлектрической проницаемости основан на увеличении емкости датчика при плотном соприкосновении его поверхности со шлифованной поверхностью диэлектрика (минерала) и соответствующем увеличении коэффициента передачи высокочастотного сигнала в измерительной цепи с этим емкостным датчиком.

На рис. 1 показана электрическая схема прибора.

Прибор для определения диэлектрической проницаемости материалов
Рис. 1 (нажмите для увеличения)

На транзисторе VT1, катушке индуктивности L2, конденсаторах С1-С3 и резисторах R1- R3 собран генератор гармонических колебаний с частотой около 2,5 МГц. С выхода генератора сигнал поступает на один электрод гребенчатой структуры емкостного датчика В1. С другого подобного электрода наводимый через емкость датчика сигнал поступает на детектор, выполненный на диоде VD1 и интегрирующей RC-цепи R10C9. Этот детектор отличается относительно низким входным сопротивлением и поэтому мало подвержен ВЧ наводкам и помехам. Минимизации наводок от сети на датчик служит и дроссель L3, представляющий для низких частот малое сопротивление. Выпрямленное напряжение на входе аналого-цифрового преобразователя почти пропорционально диэлектрической проницаемости подложки датчика и расположенного на датчике образца материала. АЦП с 3,5-разрядным цифровым ЖК индикатором (HG1) выполняет роль милливольтметра. Инвертор на транзисторе VT2 создает сигнал, необходимый для высвечивания точки между вторым и третьим знаками индикатора. Максимальное значение диэлектрической проницаемости, показываемое индикатором, равно 19,99.

Питание прибора - автономное от батареи "Корунд" или аккумуляторной батареи на напряжение 9 В (например, "Ника", 7Д-0125Д).

На рис. 2 представлен эскиз конструкции измерителя диэлектрической проницаемости с емкостным датчиком, который расположен снаружи пластмассового корпуса с размерами 80x70x35 мм, использованного автором от антенного усилителя (ТАУ-1). Второй вариант конструкции отличается от показанного на рис. 2 тем, что датчик расположен со стороны, противоположной индикатору. В этом случае прибор оказывается удобно накладывать на крупный массив идентифицируемого минерала сверху.

Прибор для определения диэлектрической проницаемости материалов
Рис. 2

Внутри корпуса прибора расположены батарея питания и печатная плата с остальными элементами устройства - с одной стороны платы, и ЖК индикатор - с другой. Для индикатора и датчика в корпусе вырезаны прямоугольные отверстия соответствующих размеров. Отверстия для регулировки подстроечных резисторов должны быть доступны и расположены так, чтобы при калибровке не мешать расположению образца на поверхности датчика и наблюдению за показаниями.

Пластина емкостного датчика В1 выполнена из односторонне фольгированного стеклотекстолита с вытравленными или вырезанными из металлизации обкладками с шириной проводников и зазоров между ними 0,8...1 мм при ширине "гребенок" 8...10 мм. Датчик прикреплен к корпусу потайными винтами М2,5 на изоляционных втулках высотой 8...10 мм. Возможны и другие варианты крепления датчика. Внутри корпуса между датчиком и электронным блоком на расстоянии не ближе 10 мм нужно поместить электрический экран из бронзовой или медной фольги для уменьшения влияния рук на показания при калибровке и измерении. Провода, соединяющие датчик с устройством, и головки винтов не должны выступать над гребенками. Наложенный на датчик образец исследуемого материала должен закрывать всю поверхность "гребенки".

Колебательный контур генератора выполнен на основе дросселя ДПМ-0,1 (L2) и конденсаторов С2, С3. Катушка связи L1 имеет 20 витков провода ПЭЛШО 0,15, намотанного поверх катушки дросселя. Такой же дроссель использован в качестве индуктивности L3.

Конденсаторы С1-С3, С7, С9, С11, С12 - слюдяные, керамические термостабильных групп ТКЕ (т. е. кроме Н10-Н90) или пленочные группы К73; С5, С8 - тоже керамические.

Вместо диода Д9Е можно использовать другой германиевый - например, Д18, ГД503А.

Перед началом измерений прибор необходимо откалибровать, для чего, включив питание, с помощью подстроенных резисторов R4, R7, выведенных в отверстия в корпусе для регулировки под шлиц, добиваются показаний индикатора, соответствующих относительной диэлектрической проницаемости воздуха еr = 1 и образца материала с известным значением параметра еr. Напряжение постоянного тока на выходе детектора должно быть в пределах, достаточных для установки подстроечным резистором R4 показаний индикатора в трех разрядах - 1,00. Затем, приложив плотно к датчику гладкую (шлифованную) поверхность образца материала с известной диэлектрической проницаемостью, имеющей небольшой разброс (например, гетинакс - его еr = 5), посредством подстроечного резистора R7 выставить показания ЖК индикатора в соответствии со значением диэлектрической проницаемости выбранного калибровочного материала. Повторяя калибровку подстройкой резистора R4, добиваются уточнения показаний, соответствующих значениям диэлектрической проницаемости воздуха и используемого образца. Поверхности идентифицируемых материалов, имеющие площадь касания меньше размеров датчика, должны быть одинаковыми по толщине и площади с образцом, используемым для калибровки. В иных условиях и задачах датчик может иметь другую конструкцию, обусловленную формой, размерами и физическим состоянием образцов.

Прибор для определения диэлектрической проницаемости материалов

В качестве материалов калибровочного образца можно также рекомендовать полистирол, оргстекло, мрамор (в таблице указаны значения относительной диэлектрической проницаемости твердых диэлектрических материалов, используемых, в частности, в радиотехнике и электронике). Для указанных размеров емкостного датчика толщина исследуемого диэлектрика должна быть не менее 5 мм, иначе реальное значение параметра окажется заниженным.

Прибором фактически проводят относительные измерения, сравнивая диэлектрические свойства известного диэлектрика и образца исследуемого материала. Чем ближе они по значению оцениваемого параметра, тем меньше погрешность в измерении параметра; близкие размеры и просушка образцов также способствуют повышению точности показаний.

Автор: Л.Компаненко, г.Москва

Смотрите другие статьи раздела Измерительная техника.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Маргарин повышает риск старческого слабоумия 13.06.2025

Деменция, или старческое слабоумие, остается одной из самых серьезных и необратимых проблем современного здравоохранения. Несмотря на прогресс в медицине, эффективных методов лечения пока нет, поэтому особое внимание уделяется выявлению факторов риска и мерам профилактики. Среди них важную роль играют привычки питания, которые могут как снизить, так и повысить вероятность развития нейродегенеративных заболеваний. Одним из спорных продуктов, вызывающих все больше опасений, является маргарин - популярная замена сливочному маслу. Несмотря на свою распространенность, маргарин подвергается интенсивной химической обработке. По мнению Дэвида Винера, специалиста по фитнесу и здоровому образу жизни, работающего с приложением Freeletics на базе искусственного интеллекта, именно содержащийся в маргарине диацетил способен вызывать слипание белка бета-амилоида, который играет ключевую роль в патогенезе деменции и болезни Альцгеймера. Винер утверждает, что этот компонент не только способствует аг ...>>

Контактные линзы с инфракрасным зрением 13.06.2025

Инфракрасный свет представляет собой часть электромагнитного спектра с длиной волны более 700 нанометров - это волны, которые находятся за пределами видимого человеческому глазу диапазона. Благодаря своим свойствам инфракрасный свет широко используется в различных технологиях, от ночного видения до тепловизоров. Однако человеческий глаз не имеет способности воспринимать эти длинноволновые излучения, поэтому для наблюдения инфракрасного света до сих пор требовались громоздкие приборы, такие как ночные очки или камеры с инфракрасными детекторами. Это ограничивало их применение в повседневной жизни и профессиональной деятельности. Недавно команда ученых из Университета науки и технологий Китая под руководством нейроученого Тяня Сюэ разработала инновационные контактные линзы с наночастицами, способными преобразовывать инфракрасный свет в видимый. Этот процесс называется "восходящим преобразованием" (upconversion) - наноматериалы внутри линз меняют длинные инфракрасные волны на короткие ...>>

Ультратонкие водородные мембраны 12.06.2025

Водородные технологии приобретают все большее значение в глобальном переходе к экологически чистой энергетике. Одним из ключевых элементов таких систем являются мембраны, через которые происходит транспорт ионов в топливных элементах. Недавние разработки норвежской исследовательской лаборатории SINTEF открывают новые горизонты в этой области, предлагая ультратонкие мембраны, которые не только повышают эффективность, но и уменьшают затраты и вредное воздействие на окружающую среду. Новая мембрана, представленная специалистами SINTEF, имеет толщину всего 10 микрометров, что составляет примерно две трети от стандартной толщины в 15 микрометров. В пресс-релизе лаборатории описывается, что такой тонкий материал кажется сопоставимым с легчайшим листом бумаги формата А4, который при этом прочнее и тоньше многих аналогов. Этот значительный шаг вперед позволит существенно сократить себестоимость производства топливных элементов - примерно на 20%. При этом снижение толщины мембраны никак н ...>>

Случайная новость из Архива

Двумерный полимер крепче стали 14.02.2022

Американские материаловеды научились синтезировать двумерные полимеры, которые, в отличие от других, способны собираться послойно вместо того, чтобы образовывать одномерные цепочки. Полученный из меламина двумерный полиарамид имеет в шесть раз меньшую плотность, чем сталь, однако почти вдвое прочнее ее. Способ изготовления масштабирован - материал самособирается в растворе.
 
Химики стремятся получить ковалентно связанную высокопериодическую молекулярную структуру толщиной в один мономер. "Молекулярный ковер" (molecular carpet) - хороший термин для понятия двумерного полимера. Настоящие двумерные полимеры будут иметь толщину в один мономер и правильную структуру.

Большой проблемой в создании двумерных полимеров является то, что, даже несмотря на то, что стратегии синтеза таких структур существуют, трехмерный сферический аналог растет гораздо быстрее. То есть только желаемая молекулярная структура полимеризуется, ее быстро обгонит уже знакомая трехмерная, для создания которой достаточно одного вращения связи присоединенного мономера. В своей работе исследователи Массачусетского технологического института попытались обойти это ограничение и начали экспериментировать с амидами.

Гипотеза авторов работы состоит в том, что сильные амидно-ароматические связки угнетают внутриструктурное вращение цепочек, то есть не даст им вернуться и выйти из плоскости. Ученые смешали меланин и тримезоилхлорид в присутствии пиридина, а полученный гель очистили и высушили в вакууме, в результате чего получили свой двумерный полимер, где молекулы собрались в нанослои благодаря прочной межслойной водородной связи.

Поскольку материал самособирается в растворе, его можно производить в больших количествах, просто увеличивая количество исходных материалов. Созданный материал ученые назвали полиарамидом. Среднюю молекулярную толщину они оценили в 3,69 ангстрема, а диаметр 10,3 нанометра, что является определяющим признаком двумерной полимеризации.

Сканирующая электронная микроскопия полученных пленок не выявила дефектов в структуре полимера, а тест на газопроницаемость показал, что полимерные пленки пропускают газ примерно в 22 раза хуже, чем наиболее газонепроницаемые барьерные материалы. Также ученые обнаружили, что модуль упругости нового материала - необходимая для деформации материала сила - достиг значение 12,7 гигапаскаля, что значительно выше, чем у термопластов, укрепленной эпоксидной смолы или нейлона. А предел прочности нового материала составил около 488 мегапаскалей, что почти вдвое больше, чем у конструкционной стали ASTM A36. При том, что плотность полимера составляет примерно одну шестую от таковой в стали.

Другие интересные новости:

▪ Твердотельные накопители Blue и Ultra объемом до 1 ТБ

▪ Трехмерная сканирующая система

▪ Велотренажер для метавселенной

▪ Белковый полупроводник

▪ Беспилотник для подземной разведки

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Опыты по химии. Подборка статей

▪ статья Но пораженья от победы ты сам не должен отличать. Крылатое выражение

▪ статья Какие животные могут делать запасы из консервированных дождевых червей? Подробный ответ

▪ статья Пижма розовая. Легенды, выращивание, способы применения

▪ статья Искусственный китовый ус. Простые рецепты и советы

▪ статья Цифровой термометр. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025