Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Управление освещением с любого пульта ДУ. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Инфракрасная техника

Комментарии к статье Комментарии к статье

В продаже уже появились импортные устройства аналогичного назначения, но по достаточно высокой цене. Такое приспособление при желании несложно сделать самостоятельно, причем без больших материальных затрат.

Привычной частью современного телевизора или музыкального центра является пульт дистанционного управления (ДУ) на ИК-лучах. Таким пультом можно также управлять и освещением с помощью небольшой приставки. При этом нажимается одна из кнопок (редко используемых). Предлагаемое устройство позволяет с любого пульта ДУ на расстоянии до 5 м включать и выключать нагрузку, например освещение.

Обычно для управления работой телевизора приходится держать нажатой кнопку пульта не более 1 с. Предлагаемое устройство выполняет переключение нагрузки, если кнопка на пульте нажата в течение времени более 2 с. Этот алгоритм выделения команды для управления переключением позволяет значительно упростить электрическую схему.

Управление освещением с любого пульта ДУ
Рис. 1. Приемник ПК-импульсов

Устройство состоит из приемника ИК-импульсов, рис. 1, и блока управления, рис. 2. В качестве приемника можно взять любую из типовых схем, применяемых в телевизорах для ДУ. Узел управления собран на трех КМОП микросхемах и состоит из формирователя широких импульсов (D1.1), селектора двухсекундного временного интервала (D1.2) и двоичных счетчиков на элементах триггеров D2...D3. Кнопки SB1 и SB2 позволяют включать и выключать нагрузку без пульта ДУ.

Индикатором срабатывания последнего триггера (D3.2) является свечение светодиода HL1. Оптронный ключ VS1 обеспечивает электрическую развязку блока управления от сети 220 В, что позволяет получить хорошую устойчивость схемы к помехам.

Управление освещением с любого пульта ДУ
Рис. 2. Схема узла управления (нажмите для увеличения)

Вместо оптрона оконечный каскад управления лампой можно выполнять на обычном симисторе по схеме, показанной на рис. 3.

Управление освещением с любого пульта ДУ
Рис. 3. Схема подключения симистора

На рис. 4 приведены диаграммы напряжений в контрольных точках, поясняющие работу блока управления. В начальный момент подачи питания на схему, цепь из элементов C4-R5 обеспечивает установку триггера в D3.2 в исходное состояние (лог. "0" на выходе 1).

При нажатой кнопке на пульте ДУ из приходящих пачек импульсов на входы элементов D1.1 и D1.2 формируются более широкие. Триггер D1.2 через 2 с обеспечивает установку счетчиков D2, D3.1 в исходное состояние (формирует импульс обнуления на выходе D1/12).

Схема устройства не критична к выбору деталей и их номиналы могут отличаться от указанных на 30%. Все постоянные резисторы применены типа МЛТ, подстроенный R1 - типа СП4-1. Неполярные конденсаторы типа К10-17, электролитические C3 и С5 (для приемника С1, С2 и С5, Сб) типа К53-16. Диоды КД522 можно заменить любыми импульсными. Стабилизатор напряжения D4 (импортный аналог 78L12) заменяется более распространенным из серии КР142ЕН8Б.

Трансформатор Т1 типа ТП112-8-1, но также подойдет любой из тех, что применяется в отечественных телевизорах для питания в дежурном режиме или в игровых приставках типа ДЕНДИ. Необходимое напряжение вторичной обмотки - 15...20 В, и ток - не менее 10 мА.

При подключении вместо оптронного ключа симистора, импульсный трансформатор Т2 выполняется на ферритовом кольце типоразмера К16х10х4 мм марки М4000НМ1 или М2000НМ проводом ПЭЛШО диаметром 0,18 мм и содержит в обмотке 1 - 80 витков, 2 - 60 витков. Перед намоткой острые грани сердечника необходимо закруглить надфилем, иначе они прорежут провод и будет замыкание между обмотками.

Управление освещением с любого пульта ДУ
Рис. 4. Диаграмма напряжений

Конструктивно все устройство собрано в корпусе с размерами 110х88х44 мм. Печатная плата приемника ИК-импульсов, рис. 5, помещается в экран из медной фольги, что необходимо для исключения влияния помех. Для монтажа схемы блока управления использована универсальная макетная плата, а соединения выполнялись проводами.

Управление освещением с любого пульта ДУ
Рис. 5. Печатная плата схемы приемника ИК-импульсов.

Приставка проверена в работе с пультами ДУ от импортных телевизоров разных фирм - АКАI, SAMSUNG, PANASONIC. Но так как у каждого пульта свое соотношение между длительностью кодовой посылки и интервалом, для четкого срабатывания переключения может потребоваться подстройка схемы резистором R1 (или подбора номинала конденсатора С1).

Публикация: cxem.net

Смотрите другие статьи раздела Инфракрасная техника.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 12.11.2025

Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам. Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта. Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>

Дефицит кислорода усиливает выброс закиси азота 12.11.2025

Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски. Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота. В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Случайная новость из Архива

Лампа на биолюминесцентных бактериях 26.01.2015

В природе биолюминесцентные бактерии встречаются на щупальцах определенного вида осьминога, позволяя ему светиться в темноте: при воздействии кислорода эти микроорганизмы излучают мягкий голубой свет.

Голландский дизайнер Тереза ван Донген придумала светильник Ambio в рамках работы над своим дипломным проектом в Академии дизайна Эйндохвена, а подобрать подходящие бактерии ей помогли студенты Делфтского технического университета (Нидерланды).

Лампа представляет собой прозрачную трубку с искусственной морской водой, в которую поместили фотобактерии, а чтобы она начала светиться, Amibo нужно привести в движение, для чего пришлось соорудить незамысловатый маятниковый механизм. Пока бактерии в лампе могут жить лишь несколько дней, но Тереза работает с биологами, чтобы продлить срок службы прибора и повысить яркость освещения.

Другие интересные новости:

▪ Нужен сканер для бутылок

▪ Антикризисные LED драйверы FDL-65 от от Mean Well

▪ Синхронизация бортового компьютера автомобиля с iPhone и часами Apple Watch

▪ Жирная пища разрушает мозг

▪ Деревянный пол, вырабатывающий электроэнергию от шагов

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Гирлянды. Подборка статей

▪ статья Выбор аксессуаров для видеокамеры. Искусство видео

▪ статья Чем объясняется запах, исходящий от монет? Подробный ответ

▪ статья Художественный редактор. Должностная инструкция

▪ статья Выносной щуп - делитель частоты до 500 МГц для частотомера FC250. Энциклопедия радиоэлектроники и электротехники

▪ статья S-метр в радиостанции АЛАН-100+. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025