Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Замедлитель включения лампы накаливания. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Освещение

Комментарии к статье Комментарии к статье

Известно, что лампы накаливания недолговечны. Они, как правило, выходят из строя в момент включения, когда через холодную нить лампы протекает большой ток, либо при значительном повышении сетевого напряжения. Как показывает практика, повышение напряжения на 10% сокращает срок службы лампы мощностью 100 Вт почти в 6 раз, а снижение на 15% - увеличивает его в 10 раз.

Продлить срок жизни лампы позволит автомат, схема которого приведена на рис. 1. Сразу отметим, что параллельно показанной на схеме лампе EL1 в розетку Х2 допустимо включить несколько нагрузок, мощность которых совместно с EL1 не превышает допустимую для симистора VS1. Автомат можно использовать и для питания одной-двух дорогостоящих мощных ламп, скажем, применяемых при подсветке фотографируемых объектов. В этом варианте он принесет большую экономическую выгоду, чем при защите обычных ламп накаливания.

Замедлитель включения лампы накаливания

Сетевое напряжение на устройство подается через выключатель SA1 и плавкий предохранитель. Цепочка из резистора R1, конденсаторов С1 - C3 и дросселя L1 представляет собой помехоподавляю-щий фильтр. Силовая часть автомата состоит из симистора VS1, динисторов VD3, VD4, резисторов R7 - R10, конденсаторов С5 и Сб. В узел управления входят транзистор VT1, диод VD1, стабилитрон VD2, оптрон U1, резисторы R3 - R6, конденсатор С4. О включении автомата в сеть сигнализирует светодиод HL1.

Данное устройство выполняет три функции. Во-первых, обеспечивает плавное зажигание лампы, причем в первый момент процесс разогрева должен быть более длительным. На рис. 2 видно, что в диапазоне от 0 до 90 В, когда начинает разогреваться нить, этот промежуток равен 6 с, а остальное напряжение до 220 В нарастает за 3...4 с. Допускается также ручная регулировка яркости и плавного погасания лампы.

Замедлитель включения лампы накаливания

Как указывалось выше, напряжение на нагрузке целесообразно ограничить до 200 В, что позволит значительно увеличить срок службы лампы. Плавное ее погасание происходит при размыкании контактов выключателя SA2.

Автомат работает так. При замыкании контактов выключателя SA1 выпрямленное диодом VD1 напряжение поступает на зарядную цепочку, состоящую из резисторов R3, R4, R5 и конденсатора С4. Контакты выключателя SA2 должны быть разомкнуты. В первый момент полевой транзистор VT1 закрыт, лампа EL1 не горит. Для защиты транзистора от пробоя установлен стабилитрон VD2. Продолжительность зарядки конденсатора С4 определяется сопротивлением резисторов R4 и R5, резистор R3 ограничивает падение напряжения на конденсаторе С4.

После замыкания контактов выключателя SA2 напряжение на конденсаторе С4 начинает нарастать, лампа EL1 плавно зажигается, поскольку начинает открываться транзистор VT1, на выводах 1 и 3 оптрона U1 возрастает напряжение, а темновое сопротивление встроенного фоторезистора (выводы 2,4) начинает уменьшаться, что приводит к открытию симистора VS1. Конечное напряжение EL1 определяется сопротивлением резистора R8: чем оно больше, тем меньше напряжение на лампе. Яркость лампы после ее включения устанавливают переменным резистором R9. При любом положении движка резистора автомат будет плавно зажигать и гасить лампу. Но для того, чтобы погасить лампу, необходимо ручку выключателя SA2 поставить в положение разомкнутых контактов. При этом напряжение на конденсаторе С4 начинает постепенно уменьшаться и лампа гаснет полностью. При длительных перерывах следует снимать напряжение выключателем SA1.

В автомате применены резисторы мощностью 0,25 Вт, a R2, R6, R7 - 2 Вт. Переменный резистор - любого типа с характеристикой А. Конденсаторы С1- C3, С5, С6 - К73-17, причем С1-C3 должны быть на напряжение не ниже 400 В, а С5, С6 - на 63 В. Применимы конденсаторы К73-11, К75-10 или в крайнем случае МБМ, МБГО, МБГЧ. Конденсатор С4 - К50-35 или К50-6. Кроме указанных на схеме, транзистор может быть КП304А, симистор - КУ208Г (его устанавливают на теплоотвод площадью поверхности 10,16, 25 или 65 см2 при мощности нагрузки соответственно 200, 300, 500 или 1500 Вт). Светодиод - АЛ102Б, диод VD1 - Д226В, КД209А, динисторы могут быть заменены одной микросхемой КР1167КП1Б. Выключатель SA1 - любого типа на напряжение 250 В и ток, определяемый мощностью лампы EL1 и других нагрузок; выключатель SA2 - любого типа, например ПД-9-2. Вместо оптрона ОЭП-12 подойдет ОЭП-2 или аналогичный со световым сопротивлением не более 1000 Ом. Дроссель L1 намотан на стержне диаметром 8 и длиной 40 мм из феррита 400НН проводом ПЭВ-2 0,51 и содержит 215 витков.

Перед настройкой вместо резисторов R3-R5, R8, R10 необходимо впаять подстроечные сопротивлением 1 МОм. При этом движки резисторов R3, R8, R9 следует поставить в положение минимального сопротивления, a R4, R5, R10 - в среднее положение. В качестве нагрузки включите реальную лампу. К выводам конденсатора С4 подключите ламповый вольтметр, а к выводам 1,3 оптрона - вольтметр постоянного тока. С помощью ЛАТРа подайте напряжение на автомат Лампа не должна гореть.

При напряжении сети 220 В ток потребления автомата составляет приблизительно 8 мА.

Постепенно увеличивая сопротивление резистора R3, наблюдайте возрастание напряжения на выводах 1, 3 оптрона до 1,2 В. В зависимости от разброса параметров транзистора напряжение должно быть таким, чтобы транзистор находился на границе состояния отключено - включено. Далее замкните контакты выключателя SA2 и наблюдайте скорость возрастания напряжения на выводах 1,3 оптрона до 1,8 В. При этом лампа EL1 должна медленно зажигаться, а напряжение на ней достигать 220 В. Скорость зажигания лампы зависит от сопротивления резистора R5. Чтобы замедлить включение лампы, сопротивление резистора нужно увеличить, и наоборот. Резисторы R3, R4, R5 взаимосвязаны, поэтому их следует тщательно подобрать.

После этого разомкните контакты выключателя SA2 и наблюдайте темп погасания лампы. Для его увеличения необходимо увеличить сопротивление резистора R4, и наоборот. Таким образом, резистор R4 совместно с R5 определяют скорость гашения лампы, резистор R5 - скорость зажигания, а R3 - границу между состоянием включено - выключено. Четкого гашения лампы добиваются подбором резистора R10. Далее следует подбором резистора R8 установить на лампе напряжение около 200 В при сетевом напряжении 220 В, а затем проверить ручную регулировку яркости резистором R9.

Если ручная регулировка использована не будет, вместо резистора R9 допустимо поставить перемычку.

В заключение отмечу, что чем медленнее темп зажигания лампы, тем ближе она к "вечной", особенно если лампа большой мощности.

Автор: Р.Балинский, г.Харьков, Украина

Смотрите другие статьи раздела Освещение.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 12.11.2025

Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам. Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта. Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>

Дефицит кислорода усиливает выброс закиси азота 12.11.2025

Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски. Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота. В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Случайная новость из Архива

На костяных коньках 15.09.2008

Коньки изобрели не для развлечения, а как средство передвижения. К такому выводу пришли английские и итальянские физиологи.

Коньки, сделанные из оленьих или лосиных костей и привязанные к ногам кожаными ремешками, впервые появились на юге Скандинавии около 3000 лет назад. В этом районе очень много озер, зимой они замерзают, что позволяет сокращать путь - идти прямо по льду вместо того, чтобы огибать каждое озеро по берегу.

Физиологи попросили группу добровольцев бегать по замерзшему озеру на копии древних коньков. Другая группа просто шла по льду. При этом у тех и у других замеряли частоту пульса и потребление кислорода, что позволяет судить о расходе энергии.

Оказалось, что конькобежцы перемещались вдвое быстрее пеших, экономя притом 10% энергии.

Другие интересные новости:

▪ Карты microSD повышенной надежности Transcend High Endurance

▪ Птичьему гриппу слишком холодно

▪ Автомобиль на постном масле

▪ Нанороботы для лечения астронавтов

▪ Ноутбук Dell XPS 13 Developer Edition

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Мобильная связь. Подборка статей

▪ статья Полюби нас черненькими, а беленькими нас всякий полюбит. Крылатое выражение

▪ статья Какие скорости развивают спортсмены? Подробный ответ

▪ статья Египетская сенна. Легенды, выращивание, способы применения

▪ статья Усилитель на микросхеме TDA1557Q. Энциклопедия радиоэлектроники и электротехники

▪ статья Чудо-картофелина с купюрой. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025