Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Источник питания трехфазного электродвигателя от однофазной сети с регулировкой частоты вращения. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Электродвигатели

Комментарии к статье Комментарии к статье

Асинхронные электродвигатели (в том числе трехфазные) находят широкое применение в быту и на производстве для привода машин и механизмов, скорость работы которых постоянна или изменяется с помощью редукторов с переменным передаточным числом и других механических приспособлений. Там, где необходимо плавно регулировать частоту вращения вала, предпочтение отдают, как правило, более дорогим и менее надежным коллекторным электродвигателям, у которых эту операцию выполнить просто - достаточно изменять напряжение питания или ток в обмотке возбуждения. Чтобы управлять частотой вращения вала асинхронного двигателя, приходится изменять не только напряжение, но и частоту переменного тока в его обмотках. Автор предлагаемой статьи рассказывает о своем решении этой задачи. Разработанное им устройство позволяет питать от однофазной сети асинхронный трехфазный двигатель мощностью до 3,5 кВт и изменять частоту его вращения более чем в 10 раз.

Нередко возникает необходимость плавно изменять скорость работы машин и механизмов, снабженных электроприводом. Обычно применяемые в таких случаях коллекторные электродвигатели дороги, требуют периодического обслуживания и уступают асинхронным в надежности, сроке службы и массогабаритных показателях.

Промышленность выпускает устройства частотного регулирования скорости вращения асинхронных двигателей.

Эти приборы сложны и дороги, поэтому применяют их лишь в ответственных случаях, например, в приводах станков с ЧПУ. Схемы подобных регуляторов для самостоятельного изготовления были опубликованы и в журнале "Радио" [1, 2]. К сожалению, рассчитаны они на двигатели очень небольшой мощности

Основная проблема, возникающая при разработке частотного регулятора, состоит в необходимости изменять вместе с частотой и эффективное значение подаваемого на обмотки двигателя напряжения. Дело в том, что со снижением частоты переменного тока уменьшается индуктивное сопротивление обмотки, что приводит к недопустимому возрастанию протекающего по ней тока. Чтобы избежать перегрева обмотки и насыщения магнитопровода статора, необходимо снижать напряжение питания двигателя.

Один из способов сделать это, рекомендованный в [3], состоит в подключении двигателя через регулируемый автотрансформатор, подвижный контакт которого механически связан с регулятором частоты. Способ, нужно сказать, весьма неудобный, так как масса и размеры автотрансформатора сравнимы с аналогичными показателями самого двигателя, а надежность подвижного контакта при передаче большой мощности вызывает сомнения. Гораздо удобнее изменять эффективное значение напряжения с помощью широтноимпульсной модуляции (ШИМ) [4]. В основе предлагаемого регулируемого источника питания асинхронного трехфазного электродвигателя лежит именно такой метод.

Источник построен по схеме, изображенной на рис. 1.

Источник питания трехфазного электродвигателя от однофазной сети с регулировкой частоты вращения

Мощный выпрямитель, входящий в состав блока питания и защиты БПЗ, преобразует однофазное переменное напряжение 220 В 50 Гц в постоянное 300 В. С помощью трех сдвоенных силовых ключей СК1 - СКЗ коммутируют обмотки трехфазного электродвигателя М1, подключая их в нужных очередности и полярности к выходу выпрямителя. Цепи VD1L1 и VD2L2 защищают ключи от бросков тока нагрузки.

Импульсы, управляющие ключами, генерируют блок ФИУ - формирователь управляющих импульсов. В БПЗ имеются еще несколько маломощных выпрямителей для питания ФИУ и СК, а также узел токовой защиты, отключающий устройство от сети при превышении допустимого значения потребляемого тока.

Схема ФИУ показана на рис. 2.

Источник питания трехфазного электродвигателя от однофазной сети с регулировкой частоты вращения
(нажмите для увеличения)

На микросхеме DD1 выполнен генератор тактовых импульсов. Их частоту регулируют переменным резистором R4.1 от 30 до 400 Гц. Частота импульсов на выходах микросхем DD4 и DD5 в шесть раз ниже - от 5 до 66,7 Гц. Ток именно такой частоты потечет в обмотках двигателя М1 (см. рис. 1), задавая частоту вращения его вала. Уменьшать частоту ниже указанного предела не стоит, станет заметной неравномерность вращения вала. А при частоте выше номинальной (50 Гц) резко падает момент на валу двигателя.

Цепи R5VD3C3-R10VD8C8 задерживают фронты управляющих импульсов, оставляя их спады незадержанными. Это необходимо, чтобы выходные транзисторы ключей, составляющих пару (например, СК1.1 и СК1.2), даже на очень короткое время не оказались открытыми одновременно, что было бы равносильно короткому замыканию источника постоянного напряжения 300 В и привело бы в лучшем случае к перегреву, а в худшем - к выходу из строя этих транзисторов, а с ними и других элементов СК.

На входы логических элементов DD6.1-DD6.4, DD2.3, DD2.4, кроме импульсов частотой 5...66,7 Гц, поступают более высокочастотные импульсы регулируемой скважности от генератора на элементах DD2.1, DD2.2. Переменные резисторы R4.1 и R4.2 спарены, поэтому на выходах перечисленных выше элементов одновременно с изменением частоты повторения пачек изменяется скважность заполняющих эти пачки импульсов.

Резисторы R2 и R3 подобраны таким образом, что при номинальных или повышенных оборотах на двигатель поступает практически полное напряжение, а с их уменьшением оно снижается приблизительно в два раза. В результате при пониженной в десять раз частоте ток, потребляемый электродвигателем, лишь незначительно превышает номинальный.

Инверторы DD7.1-DD7.6 с повышенной нагрузочной способностью служат буферными элементами. В их выходные цепи включены светодиоды оптронов, установленных в ключах СК1-СКЗ и обеспечивающих гальваническую развязку между цепями управления и силовыми узлами источника.

Схема СК представлена на рис. 3. Всего таких ключей шесть (по два на каждую фазу). В интервалы времени, когда через светодиод оптрона U1 ток не течет, вследствие чего его фотодиод имеет высокое сопротивление, транзисторы VT1 и VT2 открыты, VT3 и VT4 закрыты - ключ разомкнут. При протекании тока через светодиод ключ замкнут. Элементы VD3-VD6, R3 и С1 обеспечивают форсированное закрывание транзистора VT4, что снижает потери энергии и облегчает тепловой режим ключа.

Источник питания трехфазного электродвигателя от однофазной сети с регулировкой частоты вращения

Диод VD7 защищает транзистор VT4 от выбросов напряжения на индуктивной нагрузке. Подробнее узнать об устройстве силовых ключей и способах их защиты можно в книге [4]. До знакомства с ней автор сжег немало дорогих транзисторов большой мощности.

Схема БПЗ показана на рис. 4.

Источник питания трехфазного электродвигателя от однофазной сети с регулировкой частоты вращения

Ко вторичным обмоткам трансформатора Т1 подключены четыре выпрямителя. Первый из них, на диодном мосте VD1, служит для питания узлов управления ключей СК1.2-СКЗ.2. От него же через стабилизатор на транзисторе VT1 питают микросхемы ФИУ. Для питания узлов управления ключей СК1.1 - СК3.1, находящихся под высоким потенциалом, служат три изолированных выпрямителя на диодных мостах VD2- VD4.

Силовой выпрямитель собран на диодах VD7-VD10 и снабжен сглаживающим фильтром C7L1C8. Нажатием на кнопку SB2 замыкают цепь обмотки контактора КМ1. Сработавший контактор остается в таком состоянии благодаря замкнувшимся контактам КМ1.2. Напряжение 220 В, 50 Гц поступает на диодный мост VD7-VD10 через замкнувшиеся контакты КМ 1.1 и первичную обмотку трансформатора тока Т2 Вы ключают контактор и электродвигатель М1 (см. рис. 1) нажатием на кнопку SB1.

Напряжение на вторичной обмотке трансформатора Т2, выпрямленное диодным мостом VD6, пропорционально потребляемому от сети току. Как только часть этого напряжения, снимаемая с движка переменного резистора R2, превысит порог открывания тринистора VS1, реле К1 сработает и своими контактами К1.1 разомкнет цепь обмотки контактора КМ1, отключая силовой выпрямитель от сети.

Трансформатор Т1 габаритной мощностью не менее 60 Вт должен иметь четыре хорошо изолированных вторичных обмотки на напряжение 12 В Обмотка II - на ток 2 А. обмотки III-V - на 0,7 А. Вместо многообмоточного можно использовать несколько трансформаторов с меньшим числом обмоток.

Магнитопровод трансформатора Т2 - кольцо К28х6х9 из феррита 2000НМ. Его вторичная обмотка содержит 300 витков провода ПЭЛ 0,22, а роль первичной выполняет пропущенный в отверстие кольца провод, идущий к диодному мосту VD7-VD10.

Реле К1 - РЭС22 (РФ4.500.121) можно заменить любым с напряжением срабатывания 12 В и, по крайней мере, одной группой нормально замкнутых контактов. Контактор КМ1 с обмоткой на 220 В выбирают исходя из мощности электродвигателя. Катушки L1 и L2 (рис. 1) - бескаркасные, содержат по 25 витков провода ПЭЛ 1,5, намотанных внавал на оправке диаметром 30 мм.

К деталям и конструкции узлов СК (см. рис. 3) следует отнестись с особым вниманием. Именно эти узлы приносят больше всего неприятностей и материального ущерба в случае выхода из строя. Все детали перед монтажом обязательно должны быть тщательно проверены, а "подозрительные" беспощадно отбракованы. Транзистор VT4 устанавливают на теплоотвод достаточной площади (в авторском варианте - 400 см2). Рядом с ним на том же теплоотводе размещают транзистор VT3, а выводы диода VD7 припаивают непосредственно к выводам транзистора VT4.

Пару транзисторов КТ8110А, КТ8155А можно заменить одним составным МТКД-40-5-3. Он снабжен внутренним защитным диодом, поэтому диод VD7 в случае такой замены не нужен. Близкие по параметрам составные транзисторы МТКД-40-5-2 в данном случае не годятся, так как не имеют внешнего вывода базы второго (мощного) транзистора. Теплоотводящая поверхность транзисторов МТКД-40 5 3 электрически изолирована от полупроводниковой структуры, поэтому транзисторы всех ключей можно установить на общем теплоотводе.

Все силовые цепи должны быть выполнены жесткими, по возможности короткими и прямыми проводами и удалены от цепей ФИУ. Сечение каждого провода должно соответствовать протекающему току. Причем опасно не только занижать, но и завышать диаметр проводов. Цепи VD1L1 и VD2L2 (см. рис. 1) монтируют в непосредственной близости от ключей, припаивая их к выводам соответствующих транзисторов. Если блок силовых ключей не получился компактным, аналогичными защитными цепями желательно снабдить каждую пару СК.

При налаживании источника, прежде всего, с помощью осциллографа проверяют наличие и форму импульсов на выводах микросхем ФИУ Затем, не подавая напряжение на диодный мост VD7-VD10 (см. рис. 4) и не подключая двигатель М1, проверяют, поступают ли импульсы на базы транзисторов VT3 во всех СК.

После этого отключают ФИУ, а на диодный мост подают сетевое напряжение через регулируемый автотрансформатор, постепенно увеличивая его от 0 до 220 В. Двигатель остается не подключенным. Потребляемый С К ток не должен превышать нескольких десятков микроампер. Убедившись в этом, понижают напряжение на выходе автотрансформатора до нуля и, временно заблокировав ШИМ (для этого достаточно разорвать в ФИУ провод, соединяющий выход элемента DD2.2 со входами элементов DD2.3, DD2.4, DD5.1- DD5.4), включают ФИУ. Вновь постепенно увеличивая напряжение, подаваемое на СК, проверяют потребляемый ток. Он станет больше, но даже на максимальной частоте не должен превышать 100 мкА„ Операцию повторяют, разблокировав ШИМ и контролируя осциллографом форму напряжения в точках, предназначенных для подключения обмоток двигателя.

Если все проверки прошли успешно, можно подключить к источнику трехфазный электродвигатель сравнительно небольшой мощности (до 1 кВт) и проверить его работу при уменьшенном напряжении на холостом ходу, а затем - и при номинальных сетевом напряжении и механической нагрузке. Следует постоянно контролировать температуру силовых транзисторов и общий ток, потребляемый от сети. Убедившись в полной работоспособности источника, можно питать от него электродвигатели мощностью до 3,5 кВт.

Литература

  1. Дубровский А. Регулятор частоты вращения трехфазных асинхронных двигателей. - Радио, 2001, № 4, с. 42, 43.
  2. Пышкин В. Трехфазный инвертор. - Радио, 2000, № 2. с. 35.
  3. Калугин С. Доработка регулятора частоты вращения трехфазных асинхронных двигателей. - Радио, 2002, № 3, с. 31.
  4. Воронин П. Силовые полупроводниковые ключи. - М.: Додэка, 2001.

Автор: В.Нарыжный, г.Батайск Ростовской обл.

Смотрите другие статьи раздела Электродвигатели.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Почтовый космический корабль Arc 03.10.2025

Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение. Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом. Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>

Лазерное обогащение урана 02.10.2025

Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана. Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций. GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>

Случайная новость из Архива

Вам звонят ваши таблетки 04.02.2011

По оценкам Всемирной организации здравоохранения, только около половины пациентов, которым прописаны какие-то лекарства, полностью выдерживают режим их приема. Остальные забывают принять таблетку, по каким-то своим соображениям урезают дозу или полностью отказываются от лекарства.

Чтобы избежать ущерба для здоровья, в США начали выпускать "умную" баночку для таблеток. Врач программирует ее на определенный режим приема лекарства, и в назначенное время баночка, если ее не открыли, посылает радиосигнал на миниатюрную базовую станцию, включенную в любую розетку квартиры.

Эта станция, похожая на обычный ночник, начинает мигать светом и испускать негромкие звуковые сигналы. Если коробочку с таблетками по-прежнему не открывают, сигналы постепенно усиливаются. Если же и это не помогает, на сотовый телефон забвчивого пациента отправляется СМС с напоминанием. Устройство может и пожаловаться лечащему врачу, тоже с помощью СМС. Первые результаты: прием лекарств от гипертонии пациентами, снабженными новым приборчиком, возрос на 65-98%.

Любопытно, что в регулярности приема лекарств заинтересованы и производители: по оценкам, фармацевтическая промышленность США теряет в год 70 миллиардов долларов из-за того, что пациенты то и дело забывают о лекарстве.

Другие интересные новости:

▪ Злоупотребление солью задерживает половое созревание

▪ Твердотельные накопители Toshiba HK3E2

▪ Дети учатся добру на человеческих историях

▪ Вакцина от коронавируса в виде пластыря

▪ Из ускорителя - на кухню

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Энциклопедия радиоэлектроники и электротехники. Подборка статей

▪ статья Английский язык для медиков. Шпаргалка

▪ статья Какой традиционный салат в оригинале готовился с икрой, рябчиками и раками? Подробный ответ

▪ статья Слоновая трава. Легенды, выращивание, способы применения

▪ статья Электронный металлоискатель. Энциклопедия радиоэлектроники и электротехники

▪ статья Обозначения на принципиальных схемах. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025