Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Гелиостат. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Альтернативные источники энергии

Комментарии к статье Комментарии к статье

Одним из направлений гелиоэнергетики является прямое преобразование солнечной энергии в электрическую с помощью солнечных батарей. В статье описывается несложное устройство, позволяющее автоматически ориентировать солнечную батарею на солнце.

Как известно, мощность светового потока у поверхности Земли на экваторе достигает 1,1 кВт/м2 (на широте Москвы около 0,5 кВт/м2).

Примерно 40% этой энергии может быть преобразовано в электрическую солнечными батареями, созданными английской компанией Sandia National Laboratories на основе нитридо-арсенида галлия-индия. В ряде случаев целесообразно использование и обычных солнечных батарей с КПД 20% [1].

КПД солнечных батарей зависит от многих факторов, но решающим является ориентация ее элементов относительно источника излучения. Для поддержания оптимальной освещенности солнечных батарей разработаны разнообразные системы слежения - от простейших аналоговых до аналого-цифровых [2]. Регулировка подобных устройств осложнена тем, что порог их срабатывания меняется в зависимости не только от дифференциальной, но и от общей интенсивности освещения. Кроме того, для установки таких систем в исходное состояние требуется вмешательство обслуживающего персонала.

Предлагаемое устройство (гелиостат) использует импульсное регулирование и без вмешательства извне способно ориентировать солнечную батарею по наилучшей освещенности. Принципиальная схема гелиостата изображена на рис. 1. Он состоит из тактового генератора (DD1.1, DD1.2), двух интегрирующих цепей (VD1R2C2, VD2R3C3), такого же числа формирователей (DD1.3, DD1.4), цифрового компаратора (DD2), двух инверторов (DD1.5, DD1.6) и транзисторного коммутатора (VT1-VT6) направления вращения электродвигателя М1, управляющего поворотом платформы, на которой установлена солнечная батарея.

Гелиостат
(нажмите для увеличения)

С подачей питания (от самой солнечной батареи или от аккумулятора) генератор на элементах DD1.1, DD1.2 начинает вырабатывать тактовые импульсы, следующие с частотой около 300 Гц. При работе устройства сравниваются длительности импульсов, сформированных инверторами DD1.3, DD1.4 и интегрирующими цепями VD1R2C2, VD2R3C3. Их крутизна меняется в зависимости от постоянной времени интегрирования, которая, в свою очередь, зависит от освещенности фотодиодов VD1 и VD2 (ток зарядки конденсаторов С2 и C3 пропорционален их освещенности).

Сигналы с выходов интегрирующих цепей поступают на формирователи уровня DD1.3, DD1.4 и далее - на цифровой компаратор, выполненный на элементах микросхемы DD2. В зависимости от соотношения длительностей импульсов, поступающих на входы компаратора, сигнал низкого уровня появляется на выходе элемента DD2.3 (вывод 11) или DD2.4 (вывод 4). При равной освещенности фотодиодов на обоих выходах компаратора присутствуют сигналы высокого уровня.

Инверторы DD1.5 и DD1.6 необходимы для управления транзисторами VT1 и VT2. Высокий уровень сигнала на выходе первого инвертора открывает транзистор VT1, на выходе второго - VT2. Нагрузками этих транзисторов являются ключи на мощных транзисторах VT3, VT6 и VT4, VT5, которые коммутируют напряжение питания электродвигателя М1. Цепи R4C4R6 и R5C5R7 сглаживают пульсации на базах управляющих транзисторов VT1 и VT2.

Направление вращения двигателя меняется в зависимости от полярности подключения к источнику питания. Цифровой компаратор не позволяет одновременно открыться всем ключевым транзисторам, и, таким образом, обеспечивает высокую надежность системы.

С восходом солнца освещенность фотодиодов VD1 и VD2 окажется различной и электродвигатель начнет поворачивать солнечную батарею с запада на восток. По мере уменьшения разницы в длительностях импульсов, вырабатываемых формирователями, будет уменьшаться длительность результирующего импульса и скорость поворота солнечной батареи плавно замедлится, что обеспечит ее точное позиционирование. Таким образом, при импульсном управлении вращение вала электродвигателя можно передавать платформе с солнечной батареей непосредственно, без применения редуктора.

В течение дня платформа с солнечной батареей будет поворачиваться вслед за движением солнца. С наступлением сумерек длительности импульсов на входе цифрового компаратора окажутся одинаковыми и система перейдет в дежурный режим. В этом состоянии потребляемый устройством ток не превышает 1,2 мА (в режиме ориентации он зависит от мощности двигателя).

Аккумулятор гелиостата используется для накопления энергии, вырабатываемой солнечной батареей, и питания самого электронного блока. Поскольку электродвигатель включается лишь для поворота батареи (т. е. на непродолжительное время), выключатель питания не предусмотрен.

Описываемое устройство ориентирует солнечную батарею в горизонтальной плоскости. Однако при ее позиционировании следует учитывать географическую широту местности и время года. Если дополнить конструкцию блоком вертикального отклонения, собранным по аналогичной схеме, можно полностью автоматизировать ориентацию батареи в обеих плоскостях.

Кроме указанных на схеме, в устройстве можно применить микросхемы серий К564, К176 (при напряжении питания 5... 12 В). Транзисторы КТ315А заменимы любыми из серий КТ201, КТ315, КТ342, КТ3102, а КТ814А - любыми из серий КТ814, КТ816, КТ818, а также германиевыми П213-П215, П217 с любыми буквенными индексами. В последнем случае между эмиттерами и базами транзисторов VT3- VT6 следует включить резисторы сопротивлением 1...10 кОм, чтобы предотвратить их случайное открывание вследствие значительного обратного тока.

Вместо фотодиодов ФД256 допустимо использовать отдельные солнечные элементы самой батареи (включенные с соблюдением полярности), фототранзисторы без цепей смещения, а также фоторезисторы, например, СФ2, СФЗ или ФСК любой модификации. Следует только подобрать (изменением сопротивления резистора R1) частоту тактового генератора по надежному срабатыванию цифрового компаратора.

Все детали устройства смонтированы на печатной плате (рис. 2) из двусторонне фольгированного стеклотекстолита. Транзисторы VT3 - VT6 привинчены к плате и снабжены теплоотводами Г-образной формы площадью около 10 см2, согнутыми из полосок листового алюминиевого сплава толщиной 1,5 мм. При использовании более мощного электродвигателя эти транзисторы размещают вне платы на отдельных теплоотводах, обеспечивающих эффективное теплорассеяние. Плата помещена в герметичный пластмассовый корпус, закрепленный на одном уровне с солнечной батареей.

Гелиостат

Для защиты фотодиодов от избыточного облучения применен зеленый светофильтр. Между фотодатчиками помещают непрозрачную шторку. Ее закрепляют перпендикулярно плате с таким расчетом, чтобы при изменении угла освещения она затеняла один из фотодиодов.

Солнечная батарея установлена на платформе, под которой смонтирован электродвигатель МП-3-015 (напряжение питания 6 В), вращающий ее в горизонтальной плоскости. Возможно применение более мощного двигателя, у которого направление вращения вала также изменяется в зависимости от полярности напряжения.

К батарее через токосъемник подключен аккумулятор, зарядный ток которого соответствует максимальному току, вырабатываемому батареей.

Собранное из исправных деталей устройство не требует наладки и сразу же начинает работать. Его чувствительность такова, что батарея уверенно ориентируется по световому потоку от лампы МН 2,5 В-0,15 А, находящейся на расстоянии 3 м от фотодатчиков.

Литература

  1. Зиновьев К., Пантуев В. Солнечно-аккумуляторные батареи для питания РЭА. - Радио, 1995, № 1, с. 44; № 2, с. 43, 44.
  2. Байере Т. 20 конструкций с солнечными элементами. - М.: Мир, 1988.

Автор: И.Цаплин, г.Краснодар

Смотрите другие статьи раздела Альтернативные источники энергии.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Печь для любителей радио 01.07.2015

С переходом массового вещания в режим онлайн использование радиочастот стало уделом водителей такси (для прослушивания "Дорожного радио") и работников крупных логистических компаний (для поиска грузов с помощью RFID-меток). Однако благодаря новому изобретению радиоволны скоро смогут вернуться в каждый дом - для разогревания пищи.

Американская компания Freescale Semiconductors является одним из пионеров производства полупроводниковых компонентов. За 65 лет существования она стала ведущим игроком на рынке устройств для автомобилей, для встраиваемых систем, а также для коммуникационного оборудования. На только что состоявшемся в г. Остине (штат Техас) технологическом форуме фирма представила самый маленький в мире одночиповый модуль для использования в "Интернете вещей" - будущей вычислительной сети физических объектов ("вещей"), оснащенных встроенными технологиями для взаимодействия друг с другом или с внешней средой.

В числе таких вещей фирма Freescale Semiconductors видит и кухонные печи. Но не привычные нам микроволновки, а печи, работающие на радиочастоте. В отличие от СВЧ-печей, использующих магнетроны, которые генерируют микроволны при взаимодействии потока электронов с магнитным полем, в печке Freescale, вернее, ее прототипе используются радиочастотные излучатели. Они созданы на основе технологии, разработанной компанией много лет назад для обеспечения питанием сотовых вышек.

Радиочастотное излучение позволяет более точно контролировать циклы приготовления пищи, распределение тепла и степень готовности.

Согласно заявлениям компании, такая печь в состоянии быстро и равномерно довести сырую или замороженную пищу до нужной кондиции. Кроме того, те же самые излучатели в состоянии определять степень готовности пищи. А еще "радиопечь" не нарушает работу Wi-Fi, поскольку работает на гораздо более низких частотах, чем 2,4 ГГц, свойственных микроволновкам. Амбиции компании включают в себя партнерские отношения с супермаркетами и превращение печки, которая скромно называется Sage - "Мудрец", в основной узел "интернета вещей". Но пока что это все-таки прототип.

Другие интересные новости:

▪ Водная цинк-ионная батарея с продолжительным сроком службы

▪ Серия драйверов жестких дисков ATA с диаметром диска 2,5 дюйма для ноутбуков

▪ Мобильный суперчип Nvidia Tegra X1

▪ Самый черный цвет для автомобиля BMW

▪ Вода из почвы

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Крылатые слова, фразеологизмы. Подборка статей

▪ статья Кордовая скоростная модель. Советы моделисту

▪ статья Чем объясняются случаи убийства носорогов африканскими слонами? Подробный ответ

▪ статья Хурма японская. Легенды, выращивание, способы применения

▪ статья Предварительные усилители. Справочник

▪ статья Регулятор мощности на микросхеме К145АР2. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024