Бесплатная техническая библиотека
Датчики. Классификация датчиков. Энциклопедия радиоэлектроники и электротехники

Энциклопедия радиоэлектроники и электротехники / Справочник электрика
Комментарии к статье
Датчик - это элемент измерительного, сигнального, регулирующего или управляющего устройства, преобразующий контролируемую величину (температуру, давление, частоту, силу света, электрическое напряжение, ток и т. д.) в сигнал, удобный для измерения, передачи, хранения, обработки, регистрации, а иногда и для воздействия им на управляемые процессы; это устройство, преобразующее входное воздействие любой физической величины в сигнал, удобный для дальнейшего использования.
Классификация датчиков
Автоматизация различных технологических процессов, эффективное управление различными агрегатами, машинами, механизмами требуют многочисленных измерений разнообразных физических величин.
Датчики (в литературе часто называемые также измерительными преобразователями), или по-другому, сенсоры являются элементами многих систем автоматики - с их помощью получают информацию о параметрах контролируемой системы или устройства.
Используемые датчики весьма разнообразны и могут быть классифицированы по различным признакам.
В зависимости от вида входной (измеряемой) величины различают:
- датчики механических перемещений (линейных и угловых);
- пневматические;
- электрические;
- расходомеры;
- датчики скорости, ускорения, усилия, температуры, давления и др.
В настоящее время существует приблизительно следующее распределение доли измерений различных физических величин в промышленности:
- температура - 50 %;
- расход (массовый и объемный) - 20 %;
- давление -10 %;
- уровень - 5%;
- количество (масса, объем) - 5%;
- время - 5%;
- электрические и магнитные величины - менее 5 %.
По виду выходной величины, в которую преобразуется входная величина, различают неэлектрические и электрические:
- датчики постоянного тока (ЭДС или напряжения);
- датчики амплитуды переменного тока (ЭДС или напряжения);
- датчики частоты переменного тока (ЭДС или напряжения);
- датчики сопротивления (активного, индуктивного или емкостного) и др.
Большинство датчиков являются электрическими. Это обусловлено следующими достоинствами электрических измерений:
- электрические величины удобно передавать на расстояние, причем передача осуществляется с высокой скоростью;
- электрические величины универсальны в том смысле, что любые другие величины могут быть преобразованы в электрические и наоборот;
- они точно преобразуются в цифровой код и позволяют достигнуть высокой точности, чувствительности и быстродействия средств измерений.
По принципу действия датчики можно разделить на два класса:
- генераторные, которые осуществляют непосредственное преобразование входной величины в электрический сигнал;
- параметрические (датчики-модуляторы), которые входную величину преобразуют в изменение какого-либо электрического параметра (R, L или С) датчика.
По принципу действия датчики также можно разделить на такие категории:
- омические;
- реостатные;
- фотоэлектрические (оптико-электронные);
- индуктивные;
- емкостные и др.
Различают три класса датчиков по физической структуре сигнала:
- аналоговые датчики, т. е. датчики, вырабатывающие аналоговый сигнал, пропорционально изменению входной величины;
- цифровые датчики, генерирующие последовательность импульсов или двоичное слово;
- бинарные (двоичные) датчики, которые вырабатывают сигнал только двух уровней: "включено/выключено" (иначе говоря, 0 или 1).
Последние получили широкое распространение благодаря своей простоте.
Основные требования к датчикам
Рассмотрим требования, предъявляемые к датчикам:
- однозначная зависимость выходной величины от входной;
- стабильность характеристик во времени;
- высокая чувствительность;
- малые размеры и масса;
- отсутствие обратного воздействия на контролируемый процесс и на контролируемый параметр;
- работа при различных условиях эксплуатации;
- различные варианты монтажа.
Автор: Корякин-Черняк С.Л.
Смотрите другие статьи раздела Справочник электрика.
Читайте и пишите полезные комментарии к этой статье.
<< Назад
Последние новости науки и техники, новинки электроники:
Кислотность океана разрушает зубы акул
03.10.2025
Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем.
Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул.
Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>
Почтовый космический корабль Arc
03.10.2025
Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение.
Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом.
Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>
Лазерное обогащение урана
02.10.2025
Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана.
Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций.
GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>
Случайная новость из Архива Морские водоросли делают облака
01.08.2015
Над антарктическими водами Мирового океана почти никогда не рассеиваются облака, и причина тому, как оказалось, в фитопланктоне - местные микроскопические водоросли в буквальном смысле делают облака, выделяя в атмосферу аэрозольные частицы. Обычно, когда говорят про аэрозоли, то имеют в виду те, которые получаются в результате человеческой деятельности (дым из заводских труб и т. д.). Частицы сажи служат своеобразными "семенами", вокруг которых конденсируются пары воды - так и получаются капли, объединяющиеся в облако.
Но такие точки конденсации могут иметь и вполне природное происхождение: мельчайшие брызги воды, содержащие органические вещества и морскую соль, или сульфаты и соли аммония как продукты жизнедеятельности каких-нибудь живых организмов. О том, что море и его обитатели служат источником "натуральных аэрозолей", говорят давно, однако до сих пор мало кто пытался количественно оценить вклад морских экосистем в формирование облаков. Именно это попытались сделать Дэннис Хартманн (Dennis Hartmann) из Вашингтонского университета вместе коллегами из Университета Лидса, Тихоокеанской северо-западной национальной лаборатории и Лос-Аламосской национальной лаборатории.
В работе были использованы данные спутников НАСА, позволившие оценить плотность облаков между 35° и 55° южной широты. Состояние облаков сравнивали с концентрацией хлорофилла а, который обычно служит маркером биологической активности в морях и океанах. В статье в Science Advances авторы пишут, что связь между облаками и уровнем хлорофилла была однозначной: чем больше было фотосинтезирующего пигмента (то есть чем больше было водорослей), тем облачней была погода.
Жизнь в океане ежегодно повышала количество облачных водяных капель на 60%; сильнее всего эффект был заметен летом. Облака, располагающиеся невысоко над землей, отражают солнечный свет, и поверхность планеты под ними будет охлаждаться. ("Запирание" тепла и парниковый эффект обуславливаются другими, высокоуровневыми облаками.) Летом уровень солнечной радиации возрастает, и одновременно же, как было сказано, увеличивается концентрация фитопланктона - по оценкам исследователей, активность водорослей приводит к тому, что количество отраженного солнечного излучения увеличивается на 10 ватт на квадратный метр. Это сравнимо с тем, что происходит в северном полушарии, за тем исключением, что на севере добавочное "облачное отражение" возникает из-за промышленного загрязнения атмосферы.
Как микроскопические водоросли могут повышать облачность? Первый способ: выделяя газообразный диметилсульфид, который в атмосфере превращается в остаток серной кислоты - сульфат, который, в свою очередь, очень хорошо конденсирует пары воды. Второй способ: за счет органических остатков, поднимающихся в воздух на поверхности мельчайших пузырьков, оторвавшихся от воды. Такие пузырьки с органическими добавками тоже могут работать центрами конденсации облачных капель. Любопытно, что с 35° по 45° южной широты облака над океаном формируются преимущественно за счет диметилсульфида, а с 45° по 55° - за счет фитопланктонной органики.
Таким образом, предположения об активной климатической деятельности морских экосистем подтвердились - крохотные водоросли действительно могут делать облака. Мы привыкли полагать, что только человек обладает достаточным могуществом, чтобы по-крупному влиять на климат, однако, как видим, настоящее положение дел может быть сложнее. (И не только из-за фитопланктона - здесь же можно вспомнить работу сотрудников Геттингенского университета, опубликованную в прошлом году в Angewandte Chemie: в ней описывается, как обычные хвойные деревья с помощью веществ, содержащихся в их смолах, помогают формироваться облакам.) Строя климатические модели, пытаясь оценить наше влияние на погоду на планете, мы должны учитывать и вклад природных производителей облакообразующих аэрозолей.
|
Другие интересные новости:
▪ Твердотельные накопители Plextor M8V Plus
▪ Медузы как удобрение
▪ Облака далекой планеты
▪ Умные часы, анализирующие состав пота
▪ Карманные Wi-Fi-роутеры от Meizu
Лента новостей науки и техники, новинок электроники
Интересные материалы Бесплатной технической библиотеки:
▪ раздел сайта Преобразователи напряжения, выпрямители, инверторы. Подборка статей
▪ статья Рога и копыта. Крылатое выражение
▪ статья Сколько может весить самая тяжелая клетка? Подробный ответ
▪ статья Работа на установке по разливу вязких продуктов и запечатыванию пластиковых пакетов. Типовая инструкция по охране труда
▪ статья Микросхема TDA8362 в 3УСЦТ и других телевизорах. Энциклопедия радиоэлектроники и электротехники
▪ статья Электроустановки во взрывоопасных зонах. Электрические светильники. Энциклопедия радиоэлектроники и электротехники
Оставьте свой комментарий к этой статье:
Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua
2000-2025