Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Цифровой преобразователь частоты. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Радиолюбителю-конструктору

Комментарии к статье Комментарии к статье

Импульсы со стабильной частотой повторения обычно формируют из сигнала кварцевого генератора с помощью делителя, понижающего его частоту в требуемое (чаше всего целое) число раз. Однако нередки случаи, когда из-за отсутствия нужного кварцевого резонатора отношение исходной и требуемой частот получается не целым, и тогда приходится использовать делители с дробным коэффициентом пересчета [1, 2]. Правда, период формируемых ими колебаний непостоянен, но в некоторых приборах это не имеет значения.

Вниманию читателей предлагается еще один вариант подобного устройства, принцип действия которого заключается в следующем. Если представить частоту сигнала генератора f в виде суммы требуемого значения f0 и абсолютной ошибки df, то для получения частоты f0 достаточно выполнить операцию вычитания: f0=f-df. Практически она сводится к устранению из последовательности импульсов с частотой следования f каждого импульса с номером n=f/df, округленным до ближайшего целого. Например, если f=10147 кГц, a f0=10000 кГц, то df =147 Гц и n=10147/147=69,27, т. е. 69. Следовательно, исключив из исходной последовательности каждый 69-й импульс, получим f0=f-f/69=10147-10147/69=9999,943 кГц. При этом относительная ошибка из-за округления номера устраняемого импульса равна -5,7*10-6 и может быть легко устранена подстройкой генератора.

Структурная схема преобразователя частоты, реализующего такой способ, изображена на рис. 1. Счетчик D1, дешифратор D2 и генератор импульса сброса и блокировки G2 образуют делитель частоты с коэффициентом пересчета n. При поступлении с кварцевого генератора G1 импульса с номером п на выходе дешифратора D2 появляется сигнал, включающий генератор G2. Вырабатываемый им одиночный импульс приходит на один из входов ключа D3, блокируя его, и одновременно устанавливает в нулевое состояние счетчик D1. Линия задержки DT1 задерживает импульсы кварцевого генератора G1 на время, равное или несколько большее задержки срабатывания узлов делителя. Это обеспечивает одновременное поступление сигналов на входы ключа D3, и если длительность импульса генератора G2 достаточна, импульс с номером n из последовательности исключается. После этого начинается новый цикл работы преобразователя.

Цифровой преобразователь частоты
Рис. 1

Принципиальная схема преобразователя импульсов кварцевого генератора с частотой следования f=10143,57 кГц при n=68 показана на рис. 2. Кварцевый генератор выполнен на элементе DD1.1 по схеме, описанной в [3]. Элемент DD1.2 - буферный. Счетчик выполнен на микросхемах DD2, DD3, дешифратор - на элементе DD4. Задержку прохождения импульсов кварцевого генератора на ключ DD1.4 обеспечивает цепь R2C2. Время задержки (t=R2С2) при указанных на схеме номиналах примерно равно 16 нс. Генератор импульса сброса и блокировки в явном виде отсутствует. Его функцию выполняют соединенные соответствующим образом элемент DD1.3 и микросхемы DD2 - DD4.

Цифровой преобразователь частоты
Рис. 2

Работу преобразователя поясняет временная диаграмма, представленная на рис. 3. К моменту поступления на входы счетчика DD2 и дешифратора DD4 68-го импульса генератора (рис. 3, а) на всех входах дешифратора устанавливается уровень 1 (рис. 3, в-д) и с задержкой на время включения (tз.DD4) на его выходе возникает уровень 0 (рис. 3,е), воздействующий на один из входов ключа DD1.4. Благодаря задержке на время т, примерно равное tз.DD4, на другой вход ключа одновременно поступает 68-й импульс генератора (рис. 3, б), однако на выход устройства он не проходит, так как ключ закрыт (рис. 3, з). Через время задержки tз.DD1.3переключен и и элемента DD1.3 на входах R0 счетчиков DD2, DD3 возникает уровень 1 (рис. 3, ж) и по прошествии времени tз.сброса счетчики устанавливаются в нулевое состояние. В результате через время переключения tз.DD4 на выходе дешифратора DD4 снова появляется уровень 1 (рис. 3,е) и ключ открывается.

Цифровой преобразователь частоты
Рис. 3

Длительность импульса блокировки ключа определяется суммарным временем задержки tз.DD1.3+tз.сброса+tз.DD4 и в описываемом случае равна примерно 60 нс. Этого достаточно для исключения из последовательности импульса длительностью около 50 нс.

Значения частоты выходного сигнала, полученного из импульсов кварцевого генератора с частотой следования f=10143,57 кГц при четырех вариантах соединения входов дешифратора с выходами счетчика, соответствующих n=67, 68, 70, 71, сведены в таблицу, где df - частота следования блокирующих импульсов на выходе дешифратора (для измерений использовался частотомер Ч3-33). Как видно, значение частоты, наиболее близкое к требуемому (10000 кГц) получается при n=71 (дальнейшего понижения частоты добиваются подбором конденсатора С1).
Номер импульса Частота, кГц
f0 df
67 9 992.17 151.4
68 9 994.4 149.17
70 9 998,67 144,9
71 10 000,7 142,87

При длительности импульсов кварцевого генератора, большей длительности блокирующих, исключаемые импульсы частично пройдут на выход устройства и сорвут процесс получения сигнала необходимой частоты. Наиболее простой способ устранения этого недостатка - увеличение скважности импульсов, поступающих с генератора. Преобразователь скважности можно выполнить по схеме, изображенной на рис. 4 и описанной в [4].

Цифровой преобразователь частоты
Рис. 4

Временная диаграмма его работы показана на рис. 5. Устройство включают между элементами DD1.1 и DD1.2 преобразователя частоты. Импульсы на выходе элемента DD1.2 в этом случае будут иметь длительность, равную суммарному времени задержки элементов DD5.1- DD5.3 (45...55 нс) при любой частоте кварцевого генератора.

Цифровой преобразователь частоты
Рис. 5

Описываемый преобразователь частоты обладает широкими дополнительными возможностями. Используя полностью счетчик и дешифратор, можно блокировать каждый 2-256-й импульс, т. е. изменять коэффициент деления от 2 до 1+1/256, и, варьируя емкостью счетчика и включая последовательно несколько преобразователей, получать точные значения и более низких частот при наименьших затратах.

Устройство можно использовать в качестве "расщепителя" входной частоты на две составляющие: f0 и df. При этом импульсы, снимаемые с выхода дешифратора, будут иметь постоянный период следования, а коэффициент деления частоты сигнала кварцевого генератора будет равен f/df. Установив логические ключи между выходами счетчика и входами дешифратора, можно непосредственно сигналами двоичного кода управлять коэффициентом деления устройства и использовать его в преобразователях код-частота, в частотных модуляторах и т. д.

Преобразователь можно с успехом применить и для дробного умножения частоты (в не целое число раз), реализовав операцию сложения f0=f+df. Для этого необходимо каждый импульс с номером n=f/df "разрезать" на две части, добавив таким образом дополнительные импульсы к исходной последовательности. Получить нужный режим работы очень просто: достаточно цепь задержки R2C2 перенести в цепь, по которой импульсы с выхода дешифратора DD4 поступают на вывод 12 элемента DD1.4. В этом случае импульс блокировки должен быть короче импульса генератора не менее чем на 70...100 нс (для микросхем серии К155). При малой длительности импульсов генератора вместо элемента DD1.2 включают преобразователь скважности (рис. 4).

Временная диаграмма работы устройства в этом случае представлена на рис. 6.

Цифровой преобразователь частоты
Рис. 6

В режиме умножения преобразователь был проверен с кварцевым резонатором на частоту f=1014,36 кГц: при n=68 получена частота f0=1029,277 кГц. Следует иметь в виду, что для надежной работы преобразователя возможно потребуется подбор времени задержки т в интервале 10...30 нс.

Литература

  1. Бирюков С. А. Радиолюбительские цифровые устройства. - М.: Радио и связь, 1982, с. 16.
  2. Илиодоров В. Дробные делители и умножители частоты. - Радио, 1981, № 9, с. 59.
  3. Башканков П. Кварцевый генератор. - Радио. 1981, № 1, с. 60.
  4. Батушев В. А., Вениаминов В. Н., Ковалев В. Г. и др. Микросхемы и их применение, - М.: Энергия, 1978, с. 292

Автор: А.Самойленко, г. Новороссийск

Смотрите другие статьи раздела Радиолюбителю-конструктору.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Токсичность интернета преувеличена 07.01.2026

Социальные сети нередко воспринимаются как арена постоянной агрессии, оскорблений и распространения фейковой информации. Новое исследование Стэнфордского университета показывает, что реальность значительно отличается от популярного представления: интернет гораздо менее токсичен, чем многие пользователи считают. Ученые опросили более тысячи американцев, попросив их оценить долю пользователей соцсетей, которые ведут себя агрессивно или распространяют ненависть. Оказалось, что впечатления людей сильно преувеличивают масштабы проблемы. Например, респонденты считали, что почти половина пользователей Reddit хотя бы раз оставляла оскорбительные комментарии, тогда как фактические данные платформы показывают, что таких людей не более 3%. Аналогичная ситуация наблюдается с дезинформацией. Опрос показал, что большинство участников считали почти половину аудитории Facebook распространителями фейковых новостей, однако статистика говорит об обратном: фактическая доля таких пользователей состав ...>>

Процессоры Ryzen AI 400 07.01.2026

Современные вычисления все больше ориентируются на интеграцию искусственного интеллекта и высокую производительность в компактных устройствах, таких как ноутбуки и мини-ПК. Новая линейка процессоров AMD Ryzen AI 400 демонстрирует, как разработчики объединяют мощные центральные ядра, графику и нейросетевые ускорители в одном чипе, чтобы удовлетворять растущие потребности пользователей в играх, контенте и ИИ-приложениях. AMD представила процессоры серии Gorgon Point, которые включают до 12 ядер Zen 5 и до 24 потоков вычислений. Чипы поддерживают интегрированную графику RDNA 3.5, обеспечивают максимальную тактовую частоту до 5,2 ГГц и имеют энергопотребление от 15 Вт до 54 Вт. Особое внимание уделено NPU, способному обрабатывать до 60 триллионов операций в секунду (TOPS), что делает эти процессоры эффективными для задач с искусственным интеллектом. Конструкция Ryzen AI 400 сочетает ядра Zen 5 и Zen 5c, обеспечивая высокую гибкость и производительность. Несмотря на то, что архитектур ...>>

Женщины лучше распознают признаки болезни по лицу 06.01.2026

Способность распознавать, что кто-то нездоров, часто проявляется интуитивно: бледная кожа, опущенные веки, уставшее выражение лица могут сигнализировать о недомогании. Новое исследование международной группы ученых показало, что женщины в среднем точнее мужчин улавливают такие тонкие невербальные признаки болезни, что может иметь эволюционные и социальные объяснения. В отличие от предыдущих работ, где использовались отредактированные фотографии или имитация больных лиц, ученые решили проверить, насколько люди способны распознавать естественные признаки недомогания. Такой подход позволил оценить реальную чувствительность к изменениям в лицах, возникающим при болезни. В исследовании приняли участие 280 студентов, поровну мужчин и женщин. Участникам предложили оценить 24 фотографии, на которых изображены люди как в здоровом состоянии, так и во время болезни. Это дало возможность сравнить восприятие естественных признаков недомогания в реальных лицах. Для анализа состояния каждого ...>>

Случайная новость из Архива

Выращены квантовые точки для электроники будущего 24.01.2019

Сингапурские специалисты перевернули с ног на голову принцип создания квантовых точек дихалькогенидов переходных металлов - материалов будущего, схожих по открывающимся возможностям с графеном.

Двумерные дихалькогениды переходных металлов (TMD), такие как молибдениты (MoS2), обладающие схожей с графеном структурой, считаются материалами будущего с широким спектром применения. Из них можно делать сенсоры, катализаторы, фотодетекторы и устройства хранения энергии. Аналог этих материалов - квантовые точки - еще больше расширяет оптические и электронные свойства TMD.

Однако синтез дихалькогенидов переходных металлов - непростая задача. Обычно это выглядит так: минеральную руду измельчают до наномасштаба физическим или химическим путем, а затем очищают в несколько этапов. В случае квантовых точек процесс еще более сложный из-за их крошечного размера.

Новый подход, предложенный учеными Национального университета Сингапура, построен на другом принципе. Исследователи научились создавать квантовые точки определенного размера "снизу вверх": через реакцию оксидов или хлоридов переходных металлов с предшественником халькогенов. Этот метод позволил синтезировать семь видов квантовых точек и изменить их электронные и оптические свойства.

Для того чтобы продемонстрировать свой метод в действии, ученые создали прототип биомедицинского устройства для фотодинамической терапии из квантовых точек MoS2. В современной онкологии для фотодинамической терапии используют светочувствительные органические компоненты, которые уничтожают раковые клетки под воздействием окислительного стресса. Эти органические вещества могут оставаться в организме в течение нескольких дней, и пациентам в это время советуют воздержаться от воздействия ярких лучей.

Квантовые точки TMD представляют собой щадящую альтернативу, поскольку молибден и некоторые другие переходные металлы быстро усваиваются организмом. Однако потенциал квантовых точек TMD выходит далеко за пределы биомедицины. Сингапурские исследователи работают над их оптимизацией и надеются найти им применение в дисплеях нового поколения, электронике и солнечных элементах.

Американские ученые считают, что атомно-тонкие полупроводники из дихалькогенидов переходных металлов позволят в миллион раз разогнать компьютеры и повысить энергоэффективность хранения информации. По их оценке, такие полупроводники потенциально могут обрабатывать информацию со скоростью фемтосекунд.

Другие интересные новости:

▪ Лекарства из дрожжей

▪ Напиток из лужи

▪ Апельсиновая цедра улучшает здоровье сердца

▪ Цифровая носимая радиостанция Motorola MOTOTRBO SL1600

▪ Электричество превращается в спирт

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Звонки и аудио-имитаторы. Подборка статей

▪ статья Поль Валери. Знаменитые афоризмы

▪ статья Какое насекомое живет дольше всех? Подробный ответ

▪ статья Лаборант. Должностная инструкция

▪ статья Плавающий ультразвук для защиты от грызунов. Энциклопедия радиоэлектроники и электротехники

▪ статья Преобразователь напряжения для авометра Ц20. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026