Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Цифровой преобразователь частоты. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Радиолюбителю-конструктору

Комментарии к статье Комментарии к статье

Импульсы со стабильной частотой повторения обычно формируют из сигнала кварцевого генератора с помощью делителя, понижающего его частоту в требуемое (чаше всего целое) число раз. Однако нередки случаи, когда из-за отсутствия нужного кварцевого резонатора отношение исходной и требуемой частот получается не целым, и тогда приходится использовать делители с дробным коэффициентом пересчета [1, 2]. Правда, период формируемых ими колебаний непостоянен, но в некоторых приборах это не имеет значения.

Вниманию читателей предлагается еще один вариант подобного устройства, принцип действия которого заключается в следующем. Если представить частоту сигнала генератора f в виде суммы требуемого значения f0 и абсолютной ошибки df, то для получения частоты f0 достаточно выполнить операцию вычитания: f0=f-df. Практически она сводится к устранению из последовательности импульсов с частотой следования f каждого импульса с номером n=f/df, округленным до ближайшего целого. Например, если f=10147 кГц, a f0=10000 кГц, то df =147 Гц и n=10147/147=69,27, т. е. 69. Следовательно, исключив из исходной последовательности каждый 69-й импульс, получим f0=f-f/69=10147-10147/69=9999,943 кГц. При этом относительная ошибка из-за округления номера устраняемого импульса равна -5,7*10-6 и может быть легко устранена подстройкой генератора.

Структурная схема преобразователя частоты, реализующего такой способ, изображена на рис. 1. Счетчик D1, дешифратор D2 и генератор импульса сброса и блокировки G2 образуют делитель частоты с коэффициентом пересчета n. При поступлении с кварцевого генератора G1 импульса с номером п на выходе дешифратора D2 появляется сигнал, включающий генератор G2. Вырабатываемый им одиночный импульс приходит на один из входов ключа D3, блокируя его, и одновременно устанавливает в нулевое состояние счетчик D1. Линия задержки DT1 задерживает импульсы кварцевого генератора G1 на время, равное или несколько большее задержки срабатывания узлов делителя. Это обеспечивает одновременное поступление сигналов на входы ключа D3, и если длительность импульса генератора G2 достаточна, импульс с номером n из последовательности исключается. После этого начинается новый цикл работы преобразователя.

Цифровой преобразователь частоты
Рис. 1

Принципиальная схема преобразователя импульсов кварцевого генератора с частотой следования f=10143,57 кГц при n=68 показана на рис. 2. Кварцевый генератор выполнен на элементе DD1.1 по схеме, описанной в [3]. Элемент DD1.2 - буферный. Счетчик выполнен на микросхемах DD2, DD3, дешифратор - на элементе DD4. Задержку прохождения импульсов кварцевого генератора на ключ DD1.4 обеспечивает цепь R2C2. Время задержки (t=R2С2) при указанных на схеме номиналах примерно равно 16 нс. Генератор импульса сброса и блокировки в явном виде отсутствует. Его функцию выполняют соединенные соответствующим образом элемент DD1.3 и микросхемы DD2 - DD4.

Цифровой преобразователь частоты
Рис. 2

Работу преобразователя поясняет временная диаграмма, представленная на рис. 3. К моменту поступления на входы счетчика DD2 и дешифратора DD4 68-го импульса генератора (рис. 3, а) на всех входах дешифратора устанавливается уровень 1 (рис. 3, в-д) и с задержкой на время включения (tз.DD4) на его выходе возникает уровень 0 (рис. 3,е), воздействующий на один из входов ключа DD1.4. Благодаря задержке на время т, примерно равное tз.DD4, на другой вход ключа одновременно поступает 68-й импульс генератора (рис. 3, б), однако на выход устройства он не проходит, так как ключ закрыт (рис. 3, з). Через время задержки tз.DD1.3переключен и и элемента DD1.3 на входах R0 счетчиков DD2, DD3 возникает уровень 1 (рис. 3, ж) и по прошествии времени tз.сброса счетчики устанавливаются в нулевое состояние. В результате через время переключения tз.DD4 на выходе дешифратора DD4 снова появляется уровень 1 (рис. 3,е) и ключ открывается.

Цифровой преобразователь частоты
Рис. 3

Длительность импульса блокировки ключа определяется суммарным временем задержки tз.DD1.3+tз.сброса+tз.DD4 и в описываемом случае равна примерно 60 нс. Этого достаточно для исключения из последовательности импульса длительностью около 50 нс.

Значения частоты выходного сигнала, полученного из импульсов кварцевого генератора с частотой следования f=10143,57 кГц при четырех вариантах соединения входов дешифратора с выходами счетчика, соответствующих n=67, 68, 70, 71, сведены в таблицу, где df - частота следования блокирующих импульсов на выходе дешифратора (для измерений использовался частотомер Ч3-33). Как видно, значение частоты, наиболее близкое к требуемому (10000 кГц) получается при n=71 (дальнейшего понижения частоты добиваются подбором конденсатора С1).
Номер импульса Частота, кГц
f0 df
67 9 992.17 151.4
68 9 994.4 149.17
70 9 998,67 144,9
71 10 000,7 142,87

При длительности импульсов кварцевого генератора, большей длительности блокирующих, исключаемые импульсы частично пройдут на выход устройства и сорвут процесс получения сигнала необходимой частоты. Наиболее простой способ устранения этого недостатка - увеличение скважности импульсов, поступающих с генератора. Преобразователь скважности можно выполнить по схеме, изображенной на рис. 4 и описанной в [4].

Цифровой преобразователь частоты
Рис. 4

Временная диаграмма его работы показана на рис. 5. Устройство включают между элементами DD1.1 и DD1.2 преобразователя частоты. Импульсы на выходе элемента DD1.2 в этом случае будут иметь длительность, равную суммарному времени задержки элементов DD5.1- DD5.3 (45...55 нс) при любой частоте кварцевого генератора.

Цифровой преобразователь частоты
Рис. 5

Описываемый преобразователь частоты обладает широкими дополнительными возможностями. Используя полностью счетчик и дешифратор, можно блокировать каждый 2-256-й импульс, т. е. изменять коэффициент деления от 2 до 1+1/256, и, варьируя емкостью счетчика и включая последовательно несколько преобразователей, получать точные значения и более низких частот при наименьших затратах.

Устройство можно использовать в качестве "расщепителя" входной частоты на две составляющие: f0 и df. При этом импульсы, снимаемые с выхода дешифратора, будут иметь постоянный период следования, а коэффициент деления частоты сигнала кварцевого генератора будет равен f/df. Установив логические ключи между выходами счетчика и входами дешифратора, можно непосредственно сигналами двоичного кода управлять коэффициентом деления устройства и использовать его в преобразователях код-частота, в частотных модуляторах и т. д.

Преобразователь можно с успехом применить и для дробного умножения частоты (в не целое число раз), реализовав операцию сложения f0=f+df. Для этого необходимо каждый импульс с номером n=f/df "разрезать" на две части, добавив таким образом дополнительные импульсы к исходной последовательности. Получить нужный режим работы очень просто: достаточно цепь задержки R2C2 перенести в цепь, по которой импульсы с выхода дешифратора DD4 поступают на вывод 12 элемента DD1.4. В этом случае импульс блокировки должен быть короче импульса генератора не менее чем на 70...100 нс (для микросхем серии К155). При малой длительности импульсов генератора вместо элемента DD1.2 включают преобразователь скважности (рис. 4).

Временная диаграмма работы устройства в этом случае представлена на рис. 6.

Цифровой преобразователь частоты
Рис. 6

В режиме умножения преобразователь был проверен с кварцевым резонатором на частоту f=1014,36 кГц: при n=68 получена частота f0=1029,277 кГц. Следует иметь в виду, что для надежной работы преобразователя возможно потребуется подбор времени задержки т в интервале 10...30 нс.

Литература

  1. Бирюков С. А. Радиолюбительские цифровые устройства. - М.: Радио и связь, 1982, с. 16.
  2. Илиодоров В. Дробные делители и умножители частоты. - Радио, 1981, № 9, с. 59.
  3. Башканков П. Кварцевый генератор. - Радио. 1981, № 1, с. 60.
  4. Батушев В. А., Вениаминов В. Н., Ковалев В. Г. и др. Микросхемы и их применение, - М.: Энергия, 1978, с. 292

Автор: А.Самойленко, г. Новороссийск

Смотрите другие статьи раздела Радиолюбителю-конструктору.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Особенности почек помогают легче переносить высоту 18.01.2025

Высокогорные регионы всегда привлекали внимание исследователей, изучающих, как человек адаптируется к жизни в условиях разреженного воздуха. Недавнее исследование группы ученых из Университета Маунт-Ройал в Канаде, возглавляемое доктором Тревором Деем, проливает свет на важную роль почек в акклиматизации к большим высотам. Работы канадских ученых объясняют, почему представители народности шерпа, которые веками живут в высокогорных районах Тибета, значительно лучше переносят высокогорье. В своем исследовании ученые наблюдали за дыханием и составом крови участников во время их подъема на высоту 4300 метров в Гималаях, в Непале. Эксперимент проводился с участием двух групп: одна состояла из жителей низменностей, не привыкших к горной среде, а другая - из шерпов, чей организм приспособлен к жизни на большой высоте. Основное различие между этими группами было в том, как их организмы реагировали на дефицит кислорода в воздухе. У шерпов наблюдалась более быстрая и масштабная адаптация к ...>>

Производство электричества с помощью термоядерного синтеза 18.01.2025

Американская компания Commonwealth Fusion Systems (CFS) нацелена на создание первой в мире термоядерной электростанции, способной подключаться к электрической сети. Этот амбициозный проект, известный как ARC (Affordable, Robust, Compact), будет построен вблизи города Ричмонд, штат Вирджиния. В соответствии с планами, новая электростанция сможет производить до 400 мегаватт чистой энергии, что вполне хватит для обеспечения электричеством 150 тысяч домохозяйств. Прогнозируется, что станция начнет работу в 2030-х годах. Принцип работы термоядерной электростанции основан на процессе термоядерного синтеза, который происходит в ядре звезд. В отличие от традиционной атомной энергетики, где используется деление ядер атомов с образованием радиоактивных отходов, термоядерный синтез создает в качестве побочного продукта безопасный гелий. Для того чтобы удерживать плазму с температурой свыше 100 миллионов градусов Цельсия, установка будет использовать мощные магнитные поля. Тем не менее, н ...>>

Экологическая защита для овощей и фруктов 17.01.2025

Исследователи из женского колледжа Шри Нараяна в Колламе, Керала, Индия, разработали инновационный способ продления свежести фруктов и овощей. Группа под руководством Пурнимы Виджаян предложила использовать съедобное покрытие, созданное на основе целлюлозных нановолокон (CNF), полученных из луковой шелухи. Этот подход не только продлевает срок хранения продуктов, но и способствует их безопасности благодаря включению нанокуркумина, известного своими антимикробными свойствами. Основным компонентом покрытия являются CNF, полученные из переработанных отходов лука. Эти нановолокна соединяются с синтетическим биополимером, который улучшает структуру покрытия, устраняя проблемы с водостойкостью и термической стабильностью, ранее свойственные материалам на основе CNF. Кроме того, добавление нанокуркумина усиливает антимикробные свойства покрытия, делая его особенно эффективным для предотвращения порчи. Для проверки эффективности этой разработки ученые провели эксперимент с апельсинами. П ...>>

Случайная новость из Архива

Новые MOSFET от 30 до 100 вольт в корпусе SOT-23 31.10.2010

Компания International Rectifier представила семейство новых HEXFET MOSFET, имеющих ультранизкое сопротивление открытого канала Rds(on) в стандартном корпусе SOT-23. MOSFET предназначены для различных применений, например, в переключателях аккумуляторных батарей, переключателях нагрузки, электроприводах, телекоммуникационном оборудовании.

Применяя при производстве новых MOSFET самую передовую технологию изготовления кристалла кремния, удалось добиться значительного улучшения значений тока (на 90%) за счет уменьшения Rds(on) и, таким образом, предложить разработчикам оптимизированное соотношение КПД и цены для применения в конкретном устройстве.

Новая линейка транзисторов полностью покрывает диапазон напряжений от -30 до 100 В и имеет различные значения Rds(on) и заряда затвора Qg, что позволяет инженерам иметь более широкий выбор для разработки компактных, эффективных, в том числе и по цене, решений.

Другие интересные новости:

▪ Однокристальная система MT7628 для Wi-Fi 2T2R 802.11n

▪ Растягиваемый дисплей LG

▪ Звуки природы полезны для здоровья

▪ Механическая клавиатура Hexgears Hyeku F2

▪ Компактная любительская 4К-видеокамера Sony Handycam FDR-AX100E

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Защита электроаппаратуры. Подборка статей

▪ статья Качели земные и водные. Советы домашнему мастеру

▪ статья Почему некоторые люди - левши? Подробный ответ

▪ статья Нанесение металлопокрытий, работа с кислотами и щелочами. Типовая инструкция по охране труда

▪ статья Замена дверного звонка питания 220 вольт. Энциклопедия радиоэлектроники и электротехники

▪ статья Кубик в цилиндре. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025