Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Улучшение охлаждения микропроцессоров. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Компьютеры

Комментарии к статье Комментарии к статье

В последнее время получила широкое распространение практика "разгона" микропроцессоров, т. е. их эксплуатация на более высокой, чем предписано производителем, тактовой частоте. Основано это на большом запасе технических возможностей процессоров и часто (если микросхемы материнской платы позволяют) вполне себя оправдывает. Тем более, что быстрый процессор стоит гораздо дороже медленного аналога. Однако одно из главных препятствий на пути увеличения тактовой частоты - неизбежный перегрев процессора, что требует улучшения отвода от него тепла.

Прежде всего разберемся, почему с повышением тактовой частоты температура микропроцессора увеличивается и к каким неприятностям это приводит.

Мощность, потребляемая процессором от источника питания и рассеиваемая в виде тепла в окружающее пространство, состоит из двух компонент: статической и динамической. Статическую часть мощности потребляют логические элементы, находящиеся в устойчивом положении. В общем случае, она зависит от состояния элемента (логический 0 или 1), но так как в процессоре их миллионы, то в среднем остается постоянной.

Динамическая мощность расходуется на перевод логического элемента из одного состояния в другое. В это время открываются и закрываются образующие элемент транзисторы, перезаряжаются емкости переходов и соединительных цепей, происходят другие процессы, вызывающие кратковременное увеличение потребляемой мощности. Можно считать, что на каждое переключение расходуется определенная порция электрической энергии. Чем с большей частотой переключается элемент, тем больше таких порций он потребляет в единицу времени и тем больше рассеиваемая мощность.

Нужно сказать, что соотношение между динамической и статической мощностью у логических элементов разных типов неодинаково. Например, у самых быстродействующих на сегодня элементов ЭСЛ (эмиттерно-связанной логики) динамическая составляющая практически отсутствует и потребляемая ими мощность почти не зависит от частоты. Элементы структуры КМОП, напротив, почти не расходуют энергию в статическом режиме. Вся потребляемая мощность - динамическая и прямо пропорциональна частоте переключения. Другие типы логики занимают промежуточное положение. Любая БИС, в том числе микропроцессор, содержит множество элементов иногда разных типов, и количество выделяемой тепловой энергии всегда в той или иной степени зависит от рабочей (тактовой) частоты, возрастая с ее повышением.

Как известно, перегрев выделяющей тепло системы, т. е. разность температур ее поверхности и окружающей среды, пропорционален рассеиваемой мощности. Разработчики и изготовители микропроцессоров учитывают это как один из факторов, определяющих максимально-допустимую тактовую частоту. С повышением тактовой частоты температура микропроцессора неизбежно увеличится. Даже если пренебречь тривиальным "сгоранием" - полным отказом микросхемы, перегрев приводит к весьма неприятным последствиям.

С повышением температуры ухудшаются характеристики помехоустойчивости логических элементов. Это происходит из-за того, что сопротивление открытых транзисторов увеличивается, а закрытых - уменьшается. В результате сближаются уровни логических 1 и 0 и помеха, амплитуда которой при нормальной температуре была недостаточной для переключения элемента, становится опасной. Доказано, что имеется некоторая критическая температура, выше которой вероятность сбоя резко возрастает (например, с величины порядка 10-15ч-1 до 10-7 ч-1), хотя элемент продолжает работать. Для процессора Pentium II, содержащего 7,5 млн транзисторов, это означает, что сбои будут происходить почти каждый час.

Сбой иногда проходит незамеченным, испортив, например, всего одну цифру результата вычислений. В более опасных случаях он приводит к выдаче управляющим компьютером неправильной команды управляемому объекту. Когда сбой искажает в исполняемой программе команду перехода, компьютер обычно "зависает", исполняя бессмысленную последовательность команд. Зависания бывают связаны и с тепловым пробоем наиболее нагруженных элементов процессора. Такой пробой обычно обратим, и после охлаждения в выключенном состоянии работоспособность компьютера восстанавливается.

По своему опыту (у меня AMD 5x86/133, разогнанный до 160 МГц) могу сказать, что при случайном отключении вентилятора процессор "завис", проработав восемь часов, но после включения вентилятора все вернулось к норме. Измерения (прикладыванием обычного термометра) показали, что процессор начинал зависать при температуре поверхности выше 41°, а при 40° работал нормально.

Таким образом, перегрев микропроцессора приводит к увеличению интенсивности сбоев в его работе и даже к отказам. Все это необходимо хорошо представлять себе и учитывать, когда предпринимается попытка разогнать процессор до более высоких тактовых частот. Главный вывод состоит в том. что необходимо позаботиться об отводе увеличившегося количества тепла и охлаждении процессора до температуры ниже критической.

Для охлаждения используют теплоотводы - металлические пластины с достаточно большой поверхностью. К сожалению, эффективность теплоотвода не растет пропорционально его площади. Ее увеличивают, обдувая вентилятором поверхность теплоотвода. Нужно сказать, что большинство процессоров, применяемых в современных компьютерах, рассчитано на работу именно с обдуваемым теплоотводом (его называют "кулером" от слова cool - холодный), без которого их эксплуатировать запрещено. Так что речь может идти только о повышении эффективности этого устройства.

К счастью (или к сожалению), резерв есть. Из-за неровности поверхности стандартный теплоотвод прилегает к корпусу микропроцессора неплотно, между ними сохраняется слой воздуха, препятствующий теплопередаче. Тепловое сопротивление (так называется коэффициент пропорциональности между разностью температур на границах слоя и передаваемой тепловой мощностью, измеряется в градусах на ватт) слоя можно уменьшить, сделав его тоньше и заполнив веществом, хорошо проводящим тепло. Первое достигается шлифовкой контактирующих поверхностей, второе - смазыванием их специальной пастой.

Чтобы достичь цели, придется немного потрудиться. На ровную поверхность (лучше взять лист стекла) положите наждачную бумагу и. хорошо смочив ее машинным маслом и расправив, отшлифуйте поверхность теплоотвода. прилегающую к процессору. Делать это нужно без нажима круговыми движениями, постоянно добавляя масло и поворачивая деталь так. чтобы вся поверхность теплового контакта сошлифовывалась равномерно. Начинать нужно с грубой наждачной бумаги, постепенно переходя на более мелкую (вплоть до "нулевки"). Когда поверхность станет равномерно матово-зеркальной, шлифовку можно прекратить и заняться теплопроводящей пастой.

В продаже иногда встречается паста КПТ-8, но это бывает редко и далеко не везде. При ее отсутствии можно обойтись подручными средствами. Из всех жидкостей максимальной теплопроводностью обладает ртуть, но из-за ядовитости паров, электропроводности и высокой химической активности использовать ее не стоит. За ней следует вода (теплопроводность 0,648 Вт/м·рад.), но она электропроводна и быстро испаряется. Из невысыхающих жидкостей теплопроводность максимальна у глицерина (0,283 Вт/м·рад.). К тому же она растет с повышением температуры (у других жидкостей - уменьшается).

Возьмите немного глицерина и добавьте в него примерно в два раза больше по объему алюминиевой пудры. Хорошо перетрите и размешайте эту смесь, чтобы образовалась однородная вязкая паста серебристого цвета. Она должна липнуть и мазаться, но сохранять форму и не растекаться. Эта паста не проводит электрический ток. но все же следует избегать ее попадания на платы узлов компьютера и выводы микросхем. Кистью нанесите немного ласты на контактирующие поверхности процессора и теплоотвода. Некоторые стараются намазать побольше, наивно считая, что раз паста теплопроводящая. ее стоит нанести погуще. Как раз наоборот, чем меньше - тем лучше. Нужно, чтобы слой был как можно тоньше и равномерно покрывал обе поверхности, вытесняя воздух и заполняя все неровности.

Аккуратно установите теплоотвод на процессор и немного подвигайте его (притрите), чтобы вытеснить оставшиеся в зазоре воздух и излишки пасты. Не забудьте закрепить теплоотвод, а на нем вентилятор и подключить его. Теперь все готово. Для проверки "погоняйте" пару часов тест процессора в системе Troubleshooter, и если сбоев не обнаружится, можете спокойно работать.

Автор: И.Корзников, г.Екатеринбург

Смотрите другие статьи раздела Компьютеры.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Питомцы как стимулятор разума 06.10.2025

Помимо эмоциональной поддержки, домашние питомцы могут оказывать заметное воздействие на когнитивные процессы, особенно у пожилых людей. Новое масштабное исследование показало, что общение с кошками и собаками не просто улучшает настроение - оно действительно способствует замедлению возрастного снижения умственных способностей. Работа проводилась в рамках проекта Survey of Health, Ageing and Retirement in Europe (SHARE), охватывающего период с 2004 по 2022 год. В исследовании приняли участие тысячи европейцев старше 50 лет. Анализ показал, что владельцы домашних животных демонстрируют более устойчивые когнитивные функции по сравнению с теми, кто не держит питомцев. Особенно выражен эффект оказался у владельцев кошек и собак. Согласно данным ученых, владельцы собак дольше сохраняют хорошую память, в то время как хозяева кошек медленнее теряют способность к быстрому речевому взаимодействию. Исследователи связывают это с тем, что ежедневное взаимодействие с животными требует внимани ...>>

Мини-ПК ExpertCenter PN54-S1 06.10.2025

Компания ASUSTeK Computer презентовала новый мини-компьютер ASUS ExpertCenter PN54-S1. Устройство ориентировано на пользователей, которым важно сочетание производительности, энергоэффективности и универсальности - от офисных задач до мультимедийных проектов. В основе ExpertCenter PN54-S1 лежит современная аппаратная платформа AMD Hawk Point, использующая архитектуру Zen 4. Это поколение чипов отличается улучшенным управлением энергопотреблением и повышенной вычислительной мощностью. Новинка доступна в конфигурациях с процессорами Ryzen 7260, Ryzen 5220 и Ryzen 5210, представленных AMD в начале 2025 года. Таким образом, устройство охватывает широкий диапазон задач - от базовых офисных до ресурсоемких вычислений. Корпус мини-ПК выполнен из прочного алюминия и имеет размеры 130&#215;130&#215;34 мм, что делает его практически незаметным на рабочем столе или за монитором. Несмотря на компактность, внутренняя компоновка позволяет установить два модуля оперативной памяти SO-DIMM ...>>

Глазные капли, возвращающие молодость зрению 05.10.2025

С возрастом человеческий глаз постепенно теряет способность четко видеть на близком расстоянии - развивается пресбиопия, или возрастная дальнозоркость. Этот естественный процесс связан с утратой эластичности хрусталика и ослаблением цилиарной мышцы, отвечающей за фокусировку. Миллионы людей по всему миру сталкиваются с необходимостью носить очки для чтения или прибегают к хирургическим методам коррекции. Однако исследователи из Центра передовых исследований пресбиопии в Буэнос-Айресе представили решение, которое может стать удобной и неинвазивной альтернативой - специальные глазные капли, способные улучшать зрение на длительный срок. Разработку возглавила Джованна Беноцци, директор Центра. По ее словам, цель исследования состояла в том, чтобы предоставить пациентам с пресбиопией эффективный и безопасный способ коррекции зрения без хирургического вмешательства. Новые капли, созданные на основе пилокарпина и диклофенака, показали убедительные результаты: уже через час после первого пр ...>>

Случайная новость из Архива

Новый класс метаматериалов, способных изменять свои физические свойства 18.12.2018

Современные метаматериалы весьма походят на технологии, известные нам по научной фантастике. За счет уникальных свойств таких материалов можно создавать невероятные вещи, плащи-невидимки, скрывающие объекты в различных длинах волн электромагнитного спектра, а на практике такие технологии уже используются в антеннах мобильных телефонов, к примеру. Отметим, что все метаматериалы, о которых мы не раз рассказывали на страницах нашего сайта, имеют набор пусть и уникальных, но фиксированных свойств, что значительно ограничивает область их применения.

Исследователи из Ливерморской национальной лаборатории имени Лоуренса (awrence Livermore National Laboratory, LLNL) и Калифорнийского университета в Сан-Диего разработали новый класс метаматериалов - механические метаматериалы, которые могут становиться твердыми или гибкими в ответ на воздействие внешнего магнитного поля.

Для создания нового чудо-метаматериала исследователи использовали так называемую технологию 4D-печати. Название эта технология получила от того факта, что объекты, изготовленные при помощи трехмерной печати, могут изменять свою форму с течением времени, которое выступает в роли четвертого измерения. Как правило, изменения формы объекта происходят под влиянием какого-либо внешнего фактора - высокой температуры, гидратации, воздействия магнитного или электрического поля.

Основой новой технологии стали материалы, способные реагировать на внешние поля (FRMM, field-responsive metamaterial). Однако, в отличие от материалов, используемых в других технологиях 4D-печати, FRMM-материалы не изменяют свою форму, изменения затрагивают некоторые из их физических свойств, твердость, в данном случае. Создание FRMM-материалов оказалось достаточно простым делом - вместо монолитной структуры печатаемого объекта формируется трубчатая полая структура. И эти полости на следующем этапе заполняются специальной магнитной жидкостью.

Магнитная жидкость состоит из крошечных частиц магнитного материала, равномерно размешанных в объеме немагнитного растворителя. Когда такая жидкость попадает под воздействие внешнего магнитного поля, частицы в ее объеме упорядочиваются, выравниваясь вдоль линий магнитного поля, и материал превращается практически в твердый монолит. При отсутствии магнитного поля магнитная жидкость ведет себя как обычная вязкая жидкость, способная свободно течь в любом направлении.

Другие интересные новости:

▪ Сколько динозавров еще не открыто

▪ Беззвучный разговор по телефону

▪ Игровые мониторы Acer Predator 480 Гц

▪ Любовь к кофе обусловлена генами

▪ Мозг человека и временной поток

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Типовые инструкции по охране труда (ТОИ). Подборка статей

▪ статья Назначение, основные задачи и структура РСЧС. Основы безопасной жизнедеятельности

▪ статья Кто противостоял в Куликовской битве русским войскам, возглавляемым Дмитрием Донским? Подробный ответ

▪ статья Ипекакуана обыкновенная. Легенды, выращивание, способы применения

▪ статья Солнечные коллекторы. Эффективность использования. Энциклопедия радиоэлектроники и электротехники

▪ статья Воздушные линии электропередачи напряжением выше 1 кВ. Пересечение и сближение ВЛ с подземными трубопроводами. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:




Комментарии к статье:

Шамши
У меня температура достигает 60 градусов, и монитор начинает то включаться то выключаться.


Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025