Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Расчет цепей переменного тока. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Начинающему радиолюбителю

Комментарии к статье Комментарии к статье

Кроме резисторов, обладающих некоторым сопротивлением, в электрические цепи могут включаться катушки индуктивности и конденсаторы. Для постоянного тока их поведение просто и очевидно - катушка обладает некоторым сопротивлением, обычно небольшим, равным сопротивлению провода, которым она намотана, а конденсатор тока не проводит, и его сопротивление можно считать бесконечно большим (исключение - оксидные конденсаторы, имеющие небольшой ток утечки). Совершенно по-иному эти элементы ведут себя на переменном токе. В частности, на выводах катушки возникает ЭДС индукции, а ток через конденсатор начинает протекать, периодически перезаряжая пластины. Расскажем об этом подробнее.

Переменный ток назван так потому, что он непрерывно изменяется во времени. Можно придумать множество всяких видов переменного тока, но обычно мы имеем дело с периодическим процессом, повторяющимся через определенный интервал времени, называемый периодом Т. Обратная ему величина называется частотой процесса: f = 1/Т. Это число колебаний или циклов за секунду.

Немаловажное значение имеет и форма колебаний. Удобнее всего ее наблюдать с помощью осциллографа. Колебания могут быть периодической последовательностью импульсов, прямоугольными, треугольными и, вообще, какими угодно. Но оказывается, что любое, самое сложное периодическое колебание можно представить в виде суммы самых простых, синусоидальных колебаний с частотами f, 2f, 3f и т. д. Первое колебание с частотой f называют основной гармоникой, последующие - второй, третьей и т. д. гармониками. Математически это называется разложением в ряд Фурье, и таким способом чаще всего и анализируют прохождение сложных колебаний через различные радиотехнические цепи. Мы же пока займемся синусоидальными колебаниями, как основой любого, более сложного анализа.

Синусоидальное (гармоническое) напряжение описывается функцией U = Umsin(ωt - φ0), график которой показан на рис. 11.

Расчет цепей переменного тока

Аргументом функции является текущее время t, в зависимости от которого и изменяется напряжение U. Остальные величины служат параметрами колебания: Um - амплитудное значение напряжения, или просто амплитуда; ω = 2πf - угловая частота; φ0 - начальная фаза. Чтобы лучше понять значения этих параметров, на рис. 12, а, б, в показано, как влияют на колебания изменения амплитуды, частоты и начальной фазы.

Расчет цепей переменного тока

Когда говорят о переменном напряжении или токе, чаще всего имеют в виду их эффективные (действующие) значения U, I, равные 0,7 (точнее, 1 /√2) от амплитудных Um, lm, т. е. U = 0,7Um, I = 0,7lm. Расчеты можно производить как с амплитудными, так и с эффективными значениями, результат будет получаться, разумеется, в тех же значениях.

Надо еще раз заметить, что это верно только для чисто синусоидального сигнала. Сигналы другой формы имеют совершенно другие соотношения между амплитудными, средними и эффективными значениями. Для сигнала прямоугольной формы, например, амплитудные значения напряжения и тока равны эффективным, а для сигнала в виде коротких импульсов амплитуда может в десятки раз превосходить эффективное значение. Среднее же за период значение чисто переменного тока (без постоянной составляющей) равно нулю.

Соотношение между амплитудным и эффективным значением несинусоидального сигнала изменяется при прохождении им цепей с реактивными элементами, что надо постоянно иметь в виду. Обращайте внимание и на то, какие значения показывают используемые вами измерительные приборы. Простой пример измерения сетевого напряжения: вольтметр магнитоэлектрической системы, реагирующий на среднее значение, покажет 0, вольтметр электромагнитной системы - эффективное значение 220 В, вольтметр с пиковым детектором - более 300 В. Но вернемся к расчетам на переменном токе.

Если в цепи имеются только активные сопротивления, расчет производится точно так же, как и в цепях постоянного тока с помощью закона Ома и правил Кирхгофа. Иное дело, если в цепи установлены катушки индуктивности и конденсаторы. Обычная алгебра здесь уже не пригодна, и необходимо пользоваться комплексными числами.

Полное сопротивление катушки индуктивности складывается из активного сопротивления провода и индуктивного сопротивления обмотки. Последнее имеет характерные особенности: во-первых, оно растет пропорционально частоте переменного тока (на постоянном токе оно равно нулю), во-вторых, напряжение, которое выделяется на нем, опережает ток на 90° по фазе. Отношение индуктивного сопротивления катушки к активному называется добротностью и составляет обычно от нескольких единиц для низкочастотных катушек до нескольких сотен для высокочастотных.

Конденсаторы, как правило, имеют весьма высокую добротность, и их емкостное сопротивление обратно пропорционально частоте. Напряжение на конденсаторе отстает на 90° по фазе от тока. Индуктивное и емкостное сопротивления называются реактивными. В отличие от активных, на них не рассеивается мощность - она лишь может накапливаться в катушке и конденсаторе и отдаваться обратно в цепь. По этой причине реактивные сопротивления являются не действительными, а мнимыми величинами и при расчетах перед их обозначением ставится знак j = √-1. Далее все алгебраические операции производятся обычным образом с учетом правил: 1/j = -j, j2 = -1.

Полное сопротивление цепи Z = r + jX содержит действительную часть - активное сопротивление r и мнимую часть - реактивное сопротивление X, причем XL = jωL, XC - 1/jωC = - j/ωC. Индуктивное XL и емкостное XC сопротивления имеют разные знаки, что и указывает на опережение или отставание напряжения на данном сопротивлении относительно тока. В ряде случаев полезно знать абсолютное значение, или модуль полного сопротивления IZI=√r2+X2.

В качестве примера найдем полное сопротивление цепи, содержащей резистор, катушку индуктивности и конденсатор (рис. 13): Z=r+jωL+1/jωC = r+j(ωL-1/jωC) = r+jX.

Расчет цепей переменного тока

Мы видим, что активное сопротивление r от частоты не зависит, в то время как реактивное X зависит, и весьма значительно. На рис. 14 приведены графики, показывающие, как изменяются с частотой индуктивное, емкостное и общее реактивное сопротивления цепи X. Последнее обращается в нуль на некоторой частоте ω0 - резонансной частоте.

Расчет цепей переменного тока

На резонансной частоте индуктивное сопротивление равно емкостному, а знаки у них разные, поэтому они и компенсируются. Легко найти:ω0L = 1/ω0С; ω02 = 1/LC. Отсюда получается широко известная формула Томсона для резонансной частоты колебательного контура, состоящего из катушки и конденсатора: f0 = 1/(2π√LC).

Раз уж мы заговорили о контуре, то полезно упомянуть еще один важный параметр - добротность контура. Она равна отношению модуля р реактивного сопротивления катушки или конденсатора на резонансной частоте (где они равны) к активному сопротивлению r: Q = р/r. Если конденсатор имеет пренебрежимо малые потери, что обычно выполняется, то добротность контура равна добротности катушки. Реактивное сопротивление на резонансной частоте можно узнать, не вычисляя самой резонансной частоты: р = √L/C. Добротность получается максимальной (конструктивной) и может достигать нескольких сотен, если сопротивление r является лишь сопротивлением провода катушки и никаких дополнительных сопротивлений в цепь не включено.

Полное сопротивление цепи, показанной на рис. 13, можно изобразить точкой в системе координат, где по горизонтальной оси отложены активные сопротивления, а по вертикальной - реактивные (рис. 15).

Расчет цепей переменного тока

Именно так обычно и изображают числа на комплексной плоскости. При низкой частоте в цепи преобладает емкостное (отрицательное реактивное) сопротивление и точка расположится значительно ниже горизонтальной оси (случай ω→0). На резонансной частоте Z = r, а X = 0. На частотах, выше резонансной, точка расположится выше горизонтальной оси (случай ω-∞). Геометрическое место всех точек для разных частот образует вертикальную прямую линию, и на любой частоте очень легко графически найти модуль полного сопротивления, как показано для некоторой частоты ω>ω0.

Пусть теперь выводы цепи (см. рис. 13) присоединены к источнику переменного напряжения U (генератору стандартных сигналов с пренебрежимо малым внутренним сопротивлением), частоту которого можно изменять (рис. 16).

Расчет цепей переменного тока

Ток в цепи по-прежнему находится с помощью закона Ома: I = U/Z. Разумеется, ток будет переменным, с той же самой частотой, что и у источника, и если U - это эффективное значение напряжения, то и I будет эффективным значением тока. Но ведь Z - комплексная величина! Значение тока тоже получится комплексным, что означает сдвиг тока по фазе относительно приложенного напряжения.

Поступим проще: поделим напряжение на модуль полного сопротивления и получим модуль тока: |l| =U/|Z|. Нужно узнать фазу тока? Она у нас уже есть - это угол <р на графике рис. 15.

Действительно, для низких частот ток через емкостное сопротивление опережает напряжение (φ отрицательно), на резонансной частоте φ = 0, на высоких частотах ток через индуктивное сопротивление отстает от напряжения (φ положительно). Теперь нам легко построить резонансные кривые - значения амплитуды (рис. 17,а) и фазы тока (рис. 17,б) в последовательном резонансном контуре в зависимости от частоты.

Расчет цепей переменного тока

Вопрос для самопроверки. Постройте (хотя бы приблизительно) графики зависимости напряжения на катушке и на конденсаторе в зависимости от частоты в этом эксперименте (для контура, показанного на рис. 16). Попробуйте также ответить на вопрос, во сколько раз это напряжение больше (или меньше) напряжения генератора при добротности контура Q - 100? Ответ нужен с точностью не выше нескольких процентов.

Ответ. Контур состоит из последовательно включенных генератора, активного сопротивления, индуктивности и емкости. Для того чтобы узнать напряжение на катушке и на конденсаторе, надо ток в цепи помножить на сопротивление этих элементов. На резонансной частоте реактивные сопротивления катушки и конденсатора равны, но противоположны по знаку, поэтому компенсируются. Ток в цепи равен U/r. Напряжения на катушке UL и конденсаторе Uc равны друг другу, противофазны и составляют Up/r = UQ. Таким образом, на резонансной частоте они в Q = 100 раз больше напряжения генератора.

При понижении частоты ток в цепи уменьшается, реактивное сопротивление катушки также уменьшается, поэтому напряжение на катушке UL стремится к нулю. Емкостное же сопротивление растет, поэтому напряжение на конденсаторе Uc уменьшается не так быстро и стремится не к нулю, а к напряжению генератора U. Это легко усмотреть из схемы рис. 16 - на самых низких частотах емкостное сопротивление намного больше индуктивного и активного, поэтому практически все напряжение генератора оказывается приложенным к конденсатору.

При повышении частоты (выше резонансной) ток в цепи и емкостное сопротивление уменьшаются и Uс стремится к нулю. Напряжение же на катушке UL из-за увеличения ее реактивного сопротивления стремится не к нулю, а к напряжению генератора.

Графики частотной зависимости напряжений UL и UC похожи на график тока (рис. 17), но боковые ветви графиков приподняты, в первом случае - справа (в области высоких частот), во втором случае - слева (в области низких частот), как показано на рис. 61.

Расчет цепей переменного тока

Автор: В.Поляков, г.Москва

Смотрите другие статьи раздела Начинающему радиолюбителю.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 12.11.2025

Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам. Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта. Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>

Дефицит кислорода усиливает выброс закиси азота 12.11.2025

Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски. Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота. В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Случайная новость из Архива

Нюх динозавров 14.05.2009

Канадские палеонтологи изучили на сохранившихся черепах разных видов динозавров углубления в кости, где помещались обонятельные доли мозга.

Оказалось, что крупнее всего по отношению к общему объему мозга они были у тираннозавра. Видимо, этот гигантский хищник, живший 65 миллионов лет назад, мог по запаху обнаруживать жертв с большого расстояния.

Когда проверили обонятельные доли мозга археоптерикса, предка птиц, жившего 150 миллионов лет назад, выяснилось, что и он обладал острым нюхом. Современные птицы почти утратили обоняние, и неизвестно, на каком этапе эволюции и почему это случилось.

Другие интересные новости:

▪ Черная дыра родила планету

▪ Умная парковка на базе LTE-сетей

▪ Перед употреблением встряхивать

▪ Томограф работает эффективнее полиграфа

▪ Мозг предсказывает будущее

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Микрофоны, радиомикрофоны. Подборка статей

▪ статья Разговор в пользу бедных. Крылатое выражение

▪ статья Когда возникла первая полиция? Подробный ответ

▪ статья Хохлатка Галлера. Легенды, выращивание, способы применения

▪ статья Пробник для проверки оксидных конденсаторов. Энциклопедия радиоэлектроники и электротехники

▪ статья Серпантин. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025