Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Необычный АМ детектор. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Начинающему радиолюбителю

Комментарии к статье Комментарии к статье

В [1] было опубликовано описание двух миниатюрных радиоприемников. Приемники имели одинаковую радиочастотную (РЧ) часть и отличались только усилителями 3Ч. Опытные радиолюбители наверняка заметили отсутствие в конструкции обычного диодного детектора, и некоторые из тех, кто решил ее повторить, "исправили ошибку" и получили нормально работающий приемник. Менее опытные просто повторили конструкцию и также получили хорошо работающие приемники.

Детекторы без диодов хорошо известны еще со времен ламповой техники - это сеточные и анодные детекторы. В сеточном детекторе диод все же неявно присутствует - им служит промежуток сетка-катод радиолампы. Выпрямленное им напряжение звуковой частоты оказывается приложенным к той же сетке лампы и усиливается ею, поэтому коэффициент передачи сеточного детектора выше, чем диодного. В анодном детекторе рабочая точка лампы устанавливалась вблизи нижнего сгиба анодно-сеточной характеристики, в области с большой нелинейностью. Усиление лампы в этой точке меньше, поэтому, а также из-за других недостатков, анодные детекторы применялись редко.

Эти технические решения впоследствии частично перешли и в транзисторную технику - появились детекторы, выполненные на транзисторах. Чтобы разобраться в их работе, обратимся к основам теории детектирования. Как и все основы, они достаточно просты. Начальные сведения об амплитудной модуляции (AM) можно прочесть в [2].

Упрощенная схема диодного детектора показана на рис. 1,а. AM сигнал от источника G1 подведен к диоду VD1. При больших амплитудах сигнала детектор действует как выпрямитель. Продетектированный сигнал ЗЧ выделяется на нагрузке R1. Конденсатор С1 служит для сглаживания пульсаций выпрямленного напряжения. Вольт-амперную характеристику (ВАХ) диода при больших сигналах обычно аппроксимируют ломаной линией, показанной на рис. 1,б. Внизу графика показана осциллограмма напряжения AM сигнала, подведенного к диоду, а справа - осциллограмма тока через диод. Видно, что диод пропускает только положительные полуволны сигнала, и их среднее значение соответствует колебаниям звуковой частоты (3Ч). При достаточно больших значениях R1C1 напряжение на нагрузке соответствует огибающей импульсов тока.

Необычный АМ детектор

Пиковые детекторы весьма эффективны, обеспечивая на выходе напряжение, почти равное амплитуде входного РЧ напряжения. То же происходит и в выпрямителях - радиолюбители это знают. Поэтому в ламповых радиоприемниках в основном применялись именно пиковые AM детекторы, а впоследствии они "перешли" и в транзисторную технику. Из-за прямой пропорциональности выходного напряжения амплитуде входного их нередко называли "линейными" детекторами. В итоге про квадратичные детекторы давно и благополучно забыли, оставив их для простейших детекторных приемников.

Вместе с тем пиковые детекторы имеют и серьезный недостаток, хорошо работая лишь при больших амплитудах РЧ сигнала. Для полупроводниковых диодов характерно наличие некоторого "порогового" напряжения, ниже которого через диод течет очень малый ток, следовательно, сам диод остается практически закрытым. Его значение определяется свойствами полупроводникового материала и составляет около 0,15 В для германия, около 0,5 В для кремния и несколько меньше для диодов Шотки (переход металл-полупроводник). Вполне понятно, что если входное напряжение детектора будет меньше порогового, диод останется закрытым и приемник с таким детектором окажется неспособным принимать слабые радиосигналы. По этой причине в детекторах стараются использовать только германиевые диоды. В некоторых конструкциях проблему решают путем подачи на диод начального напряжения смещения, но в этом случае усложняется схема и возникают свои проблемы, поэтому такое решение применяется редко.

Ситуация меняется, если ВАХ уже нельзя представить ломаной линией (рис. 1,в). Это - гладкая кривая зависимости тока через диод i от напряжения на диоде u. Как и любую математическую функцию, ее можно разложить в ряд и ограничиться только двумя членами, поскольку вклад высших членов ряда при небольших напряжениях на диоде пренебрежимо мал. Для детектирования существенна кривизна характеристики (второй член разложения в ряд). Именно благодаря ей и происходит детектирование. Это хорошо видно на осциллограммах рис. 1,в.

Математический анализ показывает, что продетектированный сигнал пропорционален кривизне характеристики и квадрату амплитуды входного сигнала. Отсюда и произошло название "квадратичный детектор". При достаточно малых амплитудах сигнала любой детектор становится квадратичным и его полезный продукт - постоянный без модуляции или изменяющийся со звуковыми частотами ток в нагрузке быстро убывает пропорционально квадрату амплитуды сигнала. Квадратичный детектор вносит некоторые искажения. Можно сосчитать, что коэффициент нелинейных искажений равен т/4. Он значителен лишь на пиках модуляции, достигая 25% при m = 1, а при среднем коэффициенте модуляции m = 0,3 составляет около 2,3 %. Искажения состоят в обогащении звуковых колебаний второй гармоникой и на слух мало заметны.

Исторически квадратичный детектор явился основой самых первых детекторных радиоприемников. Современным радиолюбителям наверняка приходилось читать про энтузиастов, часами искавших иголкой на самодельном кристалле "чувствительную точку". Впоследствии начался промышленный выпуск полупроводниковых диодов, что позволило создавать стабильно работающие детекторы. Отметим, что полупроводниковые диоды начали выпускать задолго до появления транзисторов - биполярный транзистор был открыт в 1948 г. при проведении лабораторных исследований полупроводникового диода.

Анализируя квадратичный детектор, несложно заметить его главный недостаток - низкую эффективность преобразования, поскольку в нем амплитуда выходного сигнала намного меньше амплитуды входного.

Квадратичный детектор, схема которого приведена на рис. 2,а, способен надежно работать с сигналом в довольно значительном диапазоне уровней. Выше мы выяснили, что для детектора нужен элемент с большой кривизной ВАХ. А такой характеристикой обладает переход база-эмиттер транзистора, ведь по своей сути это обычный диод. Но транзистор не только детектирует сигнал, но и усиливает его. Таким образом, в соответствии с терминологией, принятой в радиотехнике, устройство можно назвать активным квадратичным детектором. При минимальном количестве деталей он сочетает достоинства квадратичного и линейного детекторов.

Несколько слов о выборе режима. Как известно, наибольшей нелинейностью обладает начальный участок входной характеристики транзистора, близкий к точке "порога", как показано на рис. 2, б, поэтому ток начального смещения перехода база-эмиттер транзистора должен быть значительно ниже, нежели в обычных усилительных каскадах. В то же время не стоит и увлекаться, устанавливая ток почти у самого "порога", поскольку в режиме микротоков стабильность работы и коэффициент усиления транзисторов снижаются.

Необычный АМ детектор

Поскольку с момента публикации [1] прошло несколько лет, чтобы не утомлять читателей поиском описаний, приведем схему РЧ узла приемников (рис. 3). Как видно из рисунка, это самая обычная входная часть приемника прямого усиления с магнитной антенной WA1, катушка которой совместно с КПЕ С1 образуют единственный контур, настраиваемый на частоту принимаемого сигнала. Первый каскад на полевом транзисторе VT1 служит усилителем РЧ. Второй каскад, собранный на биполярном транзисторе VT2, и является детекторным. С его выхода снимается уже сигнал звуковой частоты, а радиочастотные токи замкнуты на общий провод конденсатором C3.

Необычный АМ детектор

В заключение остается лишь дать ответ на вопрос, неявно вынесенный в название статьи - что же необычного в этом детекторе? По мнению автора, самое необычное то, что в течение весьма длительного времени детектор оставался незамеченным. Это довольно удивительно, поскольку все транзисторные усилительные каскады "по совместительству" являются такими детекторами, обладая некоторой нелинейностью. Обнаружить эффект детектирования можно и чисто случайно, например, прослушав радиопередачу мощной станции на усилитель воспроизведения магнитофона. Тем не менее сработал обычный психологический стереотип - не замечать того, чего быть не может.

Литература

  1. Турчинский Д. Миниатюрный радиоприемник. - Радио, Ш99, №1, с. 30, 31.
  2. Поляков В. Теория: понемногу обо всем. 4. Принципы радиопередачи и приема. - Радио, 1999, №8, с. 61, 62.

Автор: Д.Турчинский, г.Москва

Смотрите другие статьи раздела Начинающему радиолюбителю.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Почтовый космический корабль Arc 03.10.2025

Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение. Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом. Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>

Лазерное обогащение урана 02.10.2025

Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана. Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций. GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>

Случайная новость из Архива

Интернет вдоль железной дороги 27.09.2000

Индийские инженеры предложили оригинальный способ быстрого и дешевого доступа в Интернет.

Частная телекоммуникационная компания планирует использовать для этих целей развитую железнодорожную сеть Индии, передавая информацию по коммуникационным и сигнальным кабелям, проложенным вдоль железнодорожного полотна.

Изобретение уже опробовано на сорокакилометровом отрезке дороги.

Другие интересные новости:

▪ Компьютерная память помогает человеческой

▪ Цветные МФУ формата A3 Konica Minolta bizhub C458, C558 и C658

▪ 80-канальный переключатель оптической связи

▪ Роботы могут помочь в реабилитации пациентов

▪ Антибактериальная одежда

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Параметры, аналоги, маркировка радиодеталей. Подборка статей

▪ статья Коль выгонят в окно, так я влечу в другое. Крылатое выражение

▪ статья Какое изобретение человека первым преодолело звуковой барьер? Подробный ответ

▪ статья Управление охраной труда

▪ статья Намотка тороидальных катушек. Энциклопедия радиоэлектроники и электротехники

▪ статья Дождь из-под зонта. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025