Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Система управления впрыском топлива Motronic 3.1

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Автомобиль. Электронный впрыск топлива

Комментарии к статье Комментарии к статье

Данная система управления включает в себя топливный насос, регулятор давления топлива, измеритель массы воздуха с нагревательным элементом, форсунки, датчик положения дроссельной заслонки, регулятор холостого хода, датчик температуры охлаждающей жидкости и датчик детонации, датчик числа оборотов двигателя, клапан вентиляции топливного бака, адсорбер, датчик содержания кислорода в выхлопных газах (лямбда-зонд), катушку зажигания и электронный блок управления (ECU). По сравнению с предыдущими моделями "Motronic", данная система управления более совершенна. Каждая форсунка имеет отдельный канал управления ECU, что обеспечивает высокую точность дозирования топлива и более быструю реакцию на изменение нагрузки двигателя. Кроме того, впрыск топлива производится трижды за один оборот коленвала двигателя.

В "Motronic 3.1" уже введен измеритель массы воздуха с нагревательным элементом, что способствует более точному расчету количества топлива ECU. Принцип работы системы следующий. Топливный насос через фильтр тонкой очистки подает топливо в распределитель топлива. Необходимое давление топлива в системе поддерживается регулятором давления топлива, который установлен на распределителе топлива и имеет зависимость от разрежения во впускном тракте. Далее топливо подается к форсункам. Время открытия клапанов форсунок определяется и регламентируется электроблоком управления. Тем самым достигается дозирование топлива подаваемого в цилиндры двигателя.

Необходимое количество топлива в зависимости от температуры охлаждающей жидкости, нагрузки двигателя и т.д. определяется электронным блоком управления по сигналам датчиков установленных на двигателе. Основными являются потенциометрический датчик положения дроссельной заслонки и измеритель массы всасываемого воздуха. Для более точного дозирования топлива, ECU учитывает сигналы датчика детонации, датчика температуры охлаждающей жидкости и лямбда-зонда. В системе предусмотрен клапан холостого хода, который управляется электроблоком управления в зависимости от нагрузки двигателя. Вентиляция топливного бака осуществляется посредством клапана с адаптивным управлением. Из топливного бака пары топлива через адсорбер (емкость с активированным углем) и клапан подаются во впускной тракт двигателя.

Управление клапана осуществляется электроблоком управления и зависит от оборотов и нагрузки двигателя. При выключении управляющего напряжения, клапан может быть открыт под действием разрежения во впускном тракте двигателя. Для предотвращения самопроизвольного воспламенения паров топлива после выключения зажигания, клапан остается под управляющим напряжением (выключенным) еще несколько секунд. После этого закрывается пружинный обратный клапан и прекращается доступ парам топлива во впускной тракт двигателя. На автомобилях оборудованных кондиционером и (или) автоматической коробкой передач устанавливаются соответствующие датчики и по их сигналам производится коррекция подачи топлива. Это позволяет компенсировать (увеличить) холостые обороты двигателя из-за их падения в результате включения компрессора кондиционера или гидротрансформатора крутящего момента.

Структурная схема системы управления впрыском топлива "Motronic 3.1"

Система управления впрыском топлива Motronic 3.1

1. Адсорбер
2. Реле топливного насоса
3. Топливный бак
4. Клапан вентиляции
5. Регулятор давления топлива
6. Накопитель топлива
7. Топливный фильтр
8. Топливный насос
9. Измеритель массы воздуха
10. Инжектор
11. Регулятор воздуха
12. Регулятор холостого хода
13. Датчик дроссельной заслонки
14. Термодатчик охлаждающей жидкости
15. Свеча зажигания
16. Электронный блок управления
17. Катушка зажигания
18. Распределитель зажигания
19. Датчик оборотов коленвала
20. Датчик детонации

Публикация: cxem.net

Смотрите другие статьи раздела Автомобиль. Электронный впрыск топлива

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Впервые преоодолена передача ВИЧ от матери к ребенку 02.01.2026

Проблема вертикальной передачи ВИЧ - от матери к ребенку - остается одной из ключевых задач глобальной медицины. Недавний отчет Всемирной организации здравоохранения (ВОЗ) демонстрирует историческое достижение: Бразилия впервые в своей истории полностью преодолела этот путь передачи вируса. Страна стала 19-й в мире и первой с населением более 100 миллионов человек, которая достигла такого результата. Достижения Бразилии основаны на комплексных медицинских программах, обеспечивающих своевременный доступ к диагностике и терапии для всех слоев населения. ВОЗ официально подтвердило, что уровень передачи ВИЧ от матери к ребенку снизился до менее двух процентов. Более 95% беременных женщин в стране получают регулярный скрининг на ВИЧ и необходимое лечение в рамках стандартного ведения беременности. Изначально программа тестировалась в крупных муниципалитетах и штатах с населением более 100 тысяч человек, а затем была масштабирована на всю страну. Такой подход позволил унифицировать ста ...>>

Нанослой германия увеличивает эффективность солнечных батарей на треть 02.01.2026

Разработка высокоэффективных солнечных батарей остается одной из ключевых задач современной энергетики. Недавнее исследование южнокорейских ученых позволило повысить производительность тонкопленочных солнечных элементов почти на 30%, что открывает новые перспективы для возобновляемых источников энергии, гибкой электроники и сенсорных устройств. Команда исследователей сосредоточилась на элементах на основе моносульфида олова (SnS) - нетоксичного и доступного материала, который идеально подходит для гибких солнечных панелей. До настоящего времени эффективность SnS-устройств оставалась низкой из-за проблем на границе контакта с металлическим электродом. В этой области возникали структурные дефекты, диффузия элементов и электрические потери, что существенно ограничивало возможности таких батарей. "Этот интерфейс был главным барьером для достижения высокой производительности", - отмечает профессор Джейонг Хо из Национального университета Чоннам. Для решения этих проблем ученые предлож ...>>

Электростатическое решение для борьбы с льдом и инеем 01.01.2026

Борьба с льдом и инеем на транспортных средствах и критически важных поверхностях зимой остается сложной и затратной задачей. Ученые из Virginia Tech разработали инновационную технологию, способную разрушать лед и иней без использования тепла или химических реагентов, что открывает новые возможности для безопасной и экологичной зимней эксплуатации транспорта. Исследователи обнаружили, что лед и иней образуют кристаллическую решетку с так называемыми ионными дефектами - заряженными участками, способными перемещаться под воздействием электрического поля. Эти дефекты являются ключом к управлению прочностью льда и его удалением с поверхностей. Когда на замерзшую поверхность подается положительный электрический заряд, отрицательные ионные дефекты притягиваются к источнику поля. Это вызывает разрушение кристаллической решетки льда, в результате чего часть льда буквально "отскакивает" от поверхности. Такой эффект позволяет удалять лед без применения внешнего тепла или химических средств ...>>

Случайная новость из Архива

Микроантенны для интерфейса мозг-компьютер 29.08.2017

Ученые из Северо-Восточного университета в Бостоне (США), под руководством инженера и материаловеда Няна Сана (Nian Sun) создали микроантенны, которые на несколько порядков миниатюрнее и эффективнее традиционных антенн.

Антенны получают информацию в виде электромагнитных волн, которые они преобразуют в переменное электрическое напряжение. Согласно законам физики, для этого размер антенны должен примерно соответствовать длине электромагнитной волны - иными словами они должны быть довольно большими. С другой стороны, антенна может резонировать также и в ответ на акустические волны той же частоты, длина которых гораздо меньше. Именно эту "лазейку" использовали Сан с коллегами.

Изобретенная ими антенна покрыта снаружи слоем пьезомагнитного материала, который расширяется и сокращается в зависимости от состояния магнитного поля. Таким образом он переводит электромагнитные колебания в звуковые. Затем следующий слой пьезоэлектрического материала переводит эти колебания в переменный электрический ток. При отправке сигнала все происходит в обратном порядке. Таким образом, антенна фактически воспринимает и отправляет звуковые колебания - и поэтому может иметь примерно в 1000 раз меньшие размеры, чем традиционная.

Авторы статьи создали два типа антенн, основанных на этом принципе. Первый, с круглой мембраной, работает в гигагерцовом диапазоне, которым пользуется, в том числе, технология Wi-Fi. Второй, с прямоугольной мембраной - для мегагерцового диапазона, используемого ТВ и радио. В экспериментах с новыми антеннами, они принимали и отправляли сигнал частотой 2,5 гГц примерно в 100 тыс. раз эффективнее обычных антенн.

По словам ведущего автора исследования, главной трудностью при конструировании было найти пьезомагнитный материал с нужными характеристиками - в итоге был выбран набор из железа, галлия и бора - и произвести его в нужном качестве.

Разработка как минимум может открыть дорогу к созданию более компактных и мощных приборов - от мобильных телефонов до спутников. В перспективе возможно также использование новых миниатюрных передатчиков в бурно развивающемся "интернете вещей". Широкие перспективы открываются для медицины - миниатюрные передатчики смогут проникнуть в любую ткань или сосуд, чтобы снять данные на месте и отправить их врачу. Теоретически возможны также мозговые импланты для создания интерфейса "мозг-компьютер" - чтобы мы смогли управлять вещами силой мысли напрямую.

Лента новостей науки и техники, новинок электроники

Рекомендуем скачать в нашей Бесплатной технической библиотеке:

▪ раздел сайта Любителям путешествовать - советы туристу

▪ журналы Evil Genius (годовые архивы)

▪ книга Электроника дома и в саду. Справочное пособие. Сидоров И.Н., 1996

▪ статья Не важно, как проголосовали, важно, как подсчитали. Крылатое выражение

▪ статья Преподаватель. Должностная инструкция

▪ статья Двухтактный инвертор с пониженным питанием, 190-230/6-27 вольт 6 ампер. Энциклопедия радиоэлектроники и электротехники

▪ справочник Сервисные меню зарубежных телевизоров. Книга №4

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025