Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Простой термокомпенсированный регулятор напряжения для автомобиля

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Автомобиль. Электронные устройства

Комментарии к статье Комментарии к статье

Большинство описанных любительских регуляторов напряжения для автомобиля, а также промышленные регуляторы, которыми комплектуют серийно выпускаемые машины, предназначены для поддержания неизменяемого стабильного напряжения на выводах генератора. При повышении нагрузки (включении фар, вентилятора и других потребителей) падение напряжения на проводах увеличивается, а напряжение бортсети соответственно уменьшается, уменьшается и ток зарядки аккумуляторной батареи.

Для стабилизации напряжения на зажимах батареи вход регулятора подключают непосредственно к батарее. Как известно [Л], для нормальной подзарядки аккумуляторной батареи напряжение на ее зажимах следует увеличивать при уменьшении температуры. Поэтому независимость стабилизируемого регулятором напряжения от температуры следует считать большим недостатком. Даже если регулятор способен корректировать напряжение в зависимости от температуры подкапотного пространства, то этого недостаточно. Настроенный на оптимальный режим летом, регулятор ставит батарею в тяжелое положение зимой, когда воздух под капотом прогревается быстро, а сама батарея - лишь после нескольких часов езды. В результате батарея остается недозаряженной, и в холодное время года приходится ее подзаряжать.

Если же регулятор настроить на оптимальную работу в холодную погоду, летом батарею он будет перезаряжать, и придется периодически доливать в нее дистиллированную воду. Наилучшим решением является контролирование регулятором температуры самой батареи и напряжения на ее зажимах. Именно такой регулятор описан в [Л], но он довольно сложен, содержит электромагнитное реле и дефицитные стабисторы в датчике температуры. Описываемый здесь регулятор напряжения не содержит реле, в качестве датчика использованы маломощные кремниевые диоды. Кроме того, он существенно проще по схеме. Согласно [Л], необходимый абсолютный температурный коэффициент напряжения (ТКН), который должен обеспечивать регулятор, равен -40,5 мВ/°С или в относительных единицах -0,298 %/°С.

Примерно такой же относительный температурный коэффициент напряжения имеют моломощные кремниевые диоды при прямом токе в несколько миллиампер, а также стабисторы, представляющие собой несколько включенных последовательно диодов. Абсолютный ТКН одного диода - около -2 мВ/°С, что при падении напряжения на нем 650 мВ дает относительное значение -2/650= -0,307%/°С. Отметим, что относительное значение ТКН цепи из нескольких диодов или стабисторов не зависит от их числа. Схема регулятора изображена на рис.1.

Простой термокомпенсированный регулятор напряжения для автомобиля. Схема реле-регулятора
(нажмите для увеличения)

Вывод Б регулятора подключают отдельным проводом к плюсовому зажиму батареи, выводы Я и Ш - к выходу выпрямительного моста генератора и к его обмотке возбуждения соответственно. Общий провод регулятора соединен с корпусом автомобиля в месте установки регулятора. Цепь из восьми диодов VD4-VD 11 прикреплена к корпусу батареи и имеет тепловой контакт с ним. Эта цепь служит термозависимым источником образцового напряжения с необходимым ТКН. При выключенном зажигании автомобиля напряжение на выводе Я отсутствует, транзисторы VT1-VT3 закрыты, напряжение питания на операционный усилитель DA1 не поступает, транзисторы VT4-VT6 также закрыты, от батареи потребляется лишь начальный ток коллектора транзисторов VT1 и VT2, который неизмеримо меньше тока саморазрядки батареи. При включении зажигания открываются транзисторы VT1-VT3, через транзистор VT3 напряжение питания поступает на ОУ DA1. Напряжение с плюсового зажима батареи через транзистор VT2 подведено к делителю R5R6R7, а с движка резистора R6 - на инвертирующий вход ОУ DA1. На неинвертирующий вход ОУ напряжение подано с цепи диодов VD4-VD11. Пока двигатель выключен, напряжение, снимаемое с движка резистора R6, меньше падения напряжения на диодах VD4-VD11, на выходе ОУ напряжение близко к напряжению аккумуляторной батареи и транзисторы VT4-VT6 открыты, через обмотку возбуждения генератора течет ток.

После запуска двигателя генератор начинает вырабатывать ток, напряжение на батарее увеличивается, операционный усилитель DA1 переключается, транзисторы VT4-VT6 закрываются, ток. вырабатываемый генератором, спадает, в результате чего снова происходит переключение ОУ и увеличение тока через обмотку возбуждения генератора. Открывание и закрывание транзисторов VT4-VT6 происходит с частотой несколько десятков или сотен герц, поддерживая необходимое напряжение на зажимах аккумуляторной батареи. Положительная обратная связь через резистор R12 обеспечивает гистерезис ОУ и превращает ОУ в триггер Шмитта. Стабилитрон VD2 согласует выходное напряжение ОУ с порогом переключения транзистора VT4. Особо следует отметить роль стабилитрона VD1, закрытого в нормальном режиме работы регулятора. Если бы его не было, то при обрыве проводов, идущих к датчику температуры VD4-VD11, ток через обмотку возбуждения генератора протекал бы непрерывно, напряжение бортовой сети сильно увеличилось, что опасно как для батареи, так и для других потребителей электроэнергии. Стабилитрон VD1 при отключении датчика температуры открывается и начинает работать источником образцового напряжения. Напряжение в бортовой сети хоть и увеличивается, но не так значительно, как при его отсутствии.

Конструкция. Все элементы регулятора, кроме диодов VD4-VD11, размещены на печатной плате размерами 93х60 мм из стеклотекстолита толщиной 1,5 мм - Чертеж платы показан на рис.2.

Простой термокомпенсированный регулятор напряжения для автомобиля. Печатная плата

Транзистор VT6 установлен на плате без теплоотвода на двух латунных втулках, выводы базы и эмиттера впаяны непосредственно в плату. Плата рассчитана на установку в корпус электромеханического реле-регулятора РР-24 на трех латунных стойках с резьбой. Выводами служат соответствующие выводы на корпусе. Датчик температуры состоит из сложенных в пакет трех пластин размерами 80х30х2 мм, одной латунной и двух стеклотекстолитовых. В средней стеклотекстолитовой пластине примерно в ее середине прорезано окно размерами 50х8 мм. В это пространство уложены восемь соединенных последовательно диодов. Выводы из провода МГТФ-0,14 помещены в ПВХ трубку, уложенную в узкий паз, пропиленный в средней пластине.

Вся конструкция склеена в единое целое эпоксидной шпаклевкой, ею же заполнена внутренняя полость средней пластины. Латунную пластину перед склеиванием необходимо залудить, все детали датчика - тщательно обезжирить. Выводы датчика припаяны непосредственно к соответствующим точкам печатной платы. Выводы желательно для надежности дополнительно прикрепить к корпусу регулятора небольшим хомутом. Латунной пластиной датчик слегка вдавлен в разогретую мастику заливки батареи. Если она не имеет мастичной заливки, латунную пластину следует прижать к ровному участку боковой поверхности корпуса батареи резиновым кольцом, вырезанным из колесной камеры. Вывод Б регулятора удобнее, подключить не к плюсовому выводу батареи, а к плюсовому токовому зажиму стартера.

Детали. В регуляторе вместо КТ3102А (VT1, VT3, VT4) и КТ208К (VT2) могут быть использованы практически любые маломощные кремниевые транзисторы соответствующей структуры. Транзистор VT5 должен допускать ток коллектора не менее 150 мА; здесь можно использовать транзисторы из серий КТ208, КТ209, КТ313, КТ3108, КТ814, КТ816 с любым буквенным индексом. Предпочтение следует отдать транзисторам в металлическом корпусе. Стабилитрон VD2 - любой на напряжение 3,3...7 В.

Диод VD3 может быть любым на прямой ток не менее ЗА. Диоды серии КД206 удобно монтировать на плате, так как на их корпус выведен анод. Конденсаторы С1, С2, С4 - КМ5 или КМ6, СЗ -К53-1 или К53-4. Применение конденсаторов серии К50 или К52 нежелательно. Дроссель L1 - ДМ-0,1; постоянные резисторы - МТ или МЛТ, подстроечный R6 - СПЗ-19а. Налаживать устройство следует в определенном порядке. Сначала к выводу Б регулятора и к корпусу подключают регулируемый источник постоянного напряжения до 16,5 В и измеряют потребляемый от него ток. Стрелка микроамперметра на 100 мкА не должна заметно отклоняться. Далее между выводом Ш и общим проводом подключают резистор сопротивлением 120 Ом мощностью 2 Вт с параллельно включенным вольтметром (или маломощную лампу накаливания на напряжение 18...24 В).

Вывод Я подключают к тому же источнику, установив его напряжение равным 13,6 В, и резистором R6 устанавливают такой порог переключения, при котором выходное напряжение на выводе Ш близко к нулю при увеличении напряжения источника сверх 13,6 В и близко к напряжению питания при уменьшении напряжения ниже этого значения. Затем отключают цепь диодов VD4-VD11 и подбирают стабилитрон VD1, добиваясь аналогичного переключения регулятора при напряжении источника питания 16...16,5 В. При подборке, если окажется необходимым, можно последовательно со стабилитроном VD1 включить один-два маломощных кремниевых диода в прямом направлении. Более точную регулировку проводят на автомобиле.

Полностью зарядив батарею аккумуляторов, вольтметром (лучше цифровым) измеряют напряжение на его выводах без нагрузки. Запускают двигатель без стартера и резистором R6 устанавливают измеренное значение напряжения на зажимах батареи. При наличии амперметра на автомобиле критерием правильной регулировки устройства может служить значение зарядного тока спустя 5...10 мин после запуска двигателя при средней частоте вращения коленчатого вала и заряженной батарее. Ток должен быть в пределах 2...3 А независимо от мощности включенной нагрузки.

Описанный выше регулятор с традиционным термокомпенсированным стабилитроном Д818Е вместо диодов VD1 и VD4-VD11 несколько лет работал на автомобиле ГАЗ-24. В летнее время приходилось доливать в батарею воду, весной и осенью - подзаряжать ее. После установки датчика VD4-VD11 необходимость в указанных операциях отпала. Вместе с использованием тиристорно-транзисторного блока электронного зажигания с удлиненной искрой, обеспечивающим быстрый запуск двигателя в самых различных условиях эксплуатации, описанный регулятор напряжения позволил довести срок службы аккумуляторной батареи до девяти лет.

Литература

Ломанович В.А. Термокомпенсированный регулятор напряжения. - Радио, 1985, № 5, с. 24-27.

Автор: С.Бирюков, Радио 1, 1994г.; Публикация: cxem.net

Смотрите другие статьи раздела Автомобиль. Электронные устройства

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 12.11.2025

Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам. Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта. Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>

Дефицит кислорода усиливает выброс закиси азота 12.11.2025

Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски. Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота. В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Случайная новость из Архива

Лабораторный рекорд мощности магнитного поля 18.10.2025

Магнитные поля окружают нас повсюду: от компасов и электроники до процессов в земном ядре. Недавно ученые Национальной лаборатории высоких магнитных полей (MagLab) в Таллагасси, штат Флорида, установили новый рекорд, создав самое мощное магнитное поле, когда-либо полученное на Земле, - 100 тесла. Для этого импульсный магнит охлаждали до -198 °C, чтобы избежать перегрева тока мощностью 1,4 гигаватта, что позволяет ему работать безопасно. Для сравнения, это поле в 200 раз сильнее магнита на холодильнике и в 100 раз мощнее промышленных электромагнитов, используемых для подъема автомобилей.

Магнитное поле возникает благодаря спинам электронов в веществе. В обычных материалах спины направлены случайным образом, но в магнитных веществах они выстраиваются в одном направлении, создавая четко выраженные полюса. Земля сама является гигантским магнитом: ее магнитное поле формируется за счет движения расплавленного железа и никеля во внешнем ядре. Согласно данным NOAA, интенсивность магнитного поля на поверхности планеты колеблется от 25 000 до 65 000 нанотесла, а ближе к ядру достигает 2,5 миллител.

История экспериментов с экстремальными магнитными полями полна разрушений. Попытки превысить предел мощности часто приводят к уничтожению оборудования. Например, в 2018 году ученые из Токийского университета достигли 1200 тесла, после чего установка была полностью разрушена. Абсолютный рекорд - 2800 тесла - зафиксирован в России в 2001 году, но и там устройство не выдержало нагрузки. Такие эксперименты наглядно демонстрируют пределы современных технологий при создании сверхмощных магнитов.

Ученые MagLab отмечают, что сверхсильные магнитные поля открывают новые горизонты для фундаментальных исследований. Они позволяют изучать поведение электронов в экстремальных условиях, что недоступно при обычных лабораторных параметрах. Эти знания могут стать основой для разработки новых типов электроники, а также технологий управляемого термоядерного синтеза, где крайне важны сильные магнитные поля для удержания плазмы.

Карта магнитного поля поверхности Земли, составленная NASA, демонстрирует вариации интенсивности в разных регионах планеты, показывая сложную структуру геомагнитного поля. Источник изображения - Терренс Сабака, отдел геодинамики NASA GSFC.

Физики подчеркивают, что магнетизм и электричество - это два проявления единой электромагнитной силы, которая действует во всех объектах, включая камни, воду и живые организмы. В большинстве случаев магнитное поле слишком слабо для прямого наблюдения, однако в магнитных материалах оно проявляется стабильно и заметно.

Такие эксперименты не только устанавливают новые рекорды, но и расширяют наше понимание природы магнетизма. Возможность создавать поля порядка сотен тесла позволяет моделировать условия, которые иначе встречаются только в экстремальных средах, например, в недрах планет или в лабораториях термоядерного синтеза.

Лента новостей науки и техники, новинок электроники

Рекомендуем скачать в нашей Бесплатной технической библиотеке:

▪ раздел сайта Блоки питания

▪ журналы ЮТ для умелых рук (годовые архивы)

▪ книга Уплотнения вала турбогенераторов с водородным охлаждением. Голоднова О.С., 2004

▪ статья Уильям Фолкнер. Знаменитые афоризмы

▪ статья Эскимосская петля. Советы туристу

▪ статья Сверхнизкочастотный металлоискатель. Энциклопедия радиоэлектроники и электротехники

▪ сборник Архив схем и сервис-мануалов телевизоров Рубин

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025