Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Измеритель заряда. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Автомобиль. Аккумуляторы, зарядные устройства

Комментарии к статье Комментарии к статье

Автомобильные аккумуляторные батареи нередко заряжают устройствами, не имеющими стабилизатора тока. Предлагаемое в этой статье устройство позволяет и в этом случае объективно определить момент окончания зарядки батареи. Более того, оно выполнит это при произвольных форме и среднем значении зарядного тока.

Окончание зарядки аккумулятора стабильным током обычно определяют по истечению известного временного отрезка (так называемая зарядка по времени). Однако в действительности зарядный ток изменяется из-за действия различных дестабилизирующих факторов. Поскольку внутреннее сопротивление аккумуляторов очень мало, даже небольшое изменение зарядного напряжения способно вызвать значительное изменение тока.

С другой стороны, введение в зарядное устройство стабилизатора тока значительно усложняет конструкцию аппарата и снижает коэффициент полезного действия. Так или иначе, автомобильные зарядные устройства промышленного изготовления, как правило, не обеспечивают стабилизации зарядного тока.

Известно, что для полной зарядки аккумулятора ему необходимо сообщить определенный электрический заряд (количество электричества), равный произведению времени зарядки на средний ток. Иными словами, момент окончания зарядки можно определять значением сообщенного аккумулятору заряда. При этом изменения тока в процессе зарядки не повлияют на заряд, а лишь приведут к увеличению или уменьшению времени зарядки.

Необходимость измерения заряда возникает и в других случаях. Например, при проведении тренировочной зарядки аккумулятора всегда требуется узнать емкость, которая будет им отдана при разрядке до минимально допустимого напряжения. При выполнении различных электрохимических процессов (например, гальванопластики) также бывает полезно измерить количество электричества, прошедшего через раствор.

Для измерения заряда, пропущенного через измерительную цепь, в условиях нестабильного тока было разработано описываемое ниже устройство. Его принципиальная схема показана на рис. 1.

Измеритель заряда
(нажмите для увеличения)

Основа устройства - преобразователь напряжения в частоту, выполненный на микросхеме DA1. Напряжение на его вход, пропорциональное току зарядки, поступает с токоизмерительных резисторов R1, R2 (либо с одного, либо с обоих, в зависимости от выбранного тумблером SA1 предела измерения). Поскольку функция преобразования линейна, частота на выходе микросхемы DA1 прямо пропорциональна току зарядки. Работа интегрального преобразователя КР1008ПП1 подробно описана в литературе [1,2]. поэтому здесь опущена.

Выходное импульсное напряжение преобразователя поступает на вход делителя частоты DD1. Частоту входных импульсов он уменьшает в 32768·60 = 1 966 080 раз. Коэффициент преобразования и коэффициент деления частоты выбраны такими, что при напряжении на входе преобразователя 1 В импульсы на выходе счетчика следуют с интервалом в 0.1 ч (или в 360 с). Иначе говоря, один импульс на выходе счетчика соответствует прошедшему через измерительную цепь электрическому заряду 0.1 А·ч. когда контакты тумблера SA1 разомкнуты, или 1 А·ч, когда замкнуты.

Несложный расчет позволяет определить требуемый коэффициент преобразования: 1966080/360=5461 Гц/В. Поскольку эта частота значительно (более чем в 50 раз) превышает 100 Гц. погрешность преобразования при измерении заряда, переносимого пульсирующим (после двуполупериодного выпрямления) током, должна быть незначительной, что и было подтверждено экспериментально.

Двуразрядный двоично-десятичный счетчик импульсов, выполненный на двух счетчиках по модулю 10 DD2. DD3 с цифровыми индикаторами HG1. HG2. подсчитывает число ампер-часов или их десятых долей. Децимальная точка индикатора HG1 включена в режиме " 10 А·ч", децимальная точка индикатора HG2 мигает при протекании зарядного тока в цепи нагрузки и тем чаще, чем больше ток.

Для установки момента отключения источника зарядного тока после протекания заданного заряда в устройстве предусмотрен установочный блок, состоящий из двух десятичных счетчиков-дешифраторов DD4. DD5. переключателей SA3, SA4 и логического узла на элементах DD6.1. DD6.2.

Изменение состояния счетчиков DD2 - DD5 происходит по спаду входных импульсов, а установка в исходное состояние - подачей напряжения высокого уровня на вход R.

В режиме измерения заряда переключателями SA3 и SA4 устанавливают требуемое значение заряда, тумблером SA1 выбирают емкость счетчика "10 А·ч" или "100 А·ч" (цена деления младшего разряда счетчика 0.1 или 1 А·ч соответственно). Вход прибора включают в разрыв цепи нагрузки в соответствии со схемой, представленной на рис. 2, а, подают на прибор напряжение сети и замыкают контакты тумблера SA2 "Пуск".

Измеритель заряда

На этом рисунке показана функциональная схема установки для измерения количества электричества, сообщаемого заряжаемой аккумуляторной батарее GB1. По такой же схеме собирают установку для проведения электрохимического процесса.

Через некоторое время на тех выходах счетчиков DD4. DD5. которые окажутся соединенными с подвижным контактом переключателей SA3, SA4. появится напряжение высокого уровня. Этот же уровень возникнет на выходе элемента DD6.2. В результате, во-первых. начнет работать генератор, выполненный на элементах DD6.3. DD6.4, вырабатывающий импульсную последовательность частотой около 2 кГц. а звуковой излучатель BF1 подаст сигнал, указывающий на то, что через заряжаемую батарею протекло заданное количество электричества.

Во-вторых, откроется транзистор VT1 и сработает электромагнитное реле К1, контакты К 1.1 которого, разомкнувшись, обесточат нагрузку. В таком состоянии установка будет находиться до тех пор. пока ее не отключат от сети.

Измеритель заряда питается от двуполярного стабилизатора напряжения 2х9 В. выполненного на микросхемах DA2, DA3. Понижающий сетевой трансформатор Т1 - унифицированный из серии ТПП. Конденсаторы С6-С10. защищающие микросхемы устройства от помех, устанавливают по одному около каждой из микросхем DD1 - DD5.

При напряжении 1 В на входе преобразователя напряжение-частота децимальная точка индикатора HG2 включается с периодом примерно 3 с. индицируя протекание тока через цепь нагрузки. Чем больше этот ток. тем чаще включение точки.

Нити катода люминесцентных индикаторов HG1 и HG2 питаются от минусового плеча стабилизатора. Это сделано для увеличения разности напряжения между анодами - элементами и катодом индикатора, что дает возможность увеличить яркость свечения табло. Люминесцентные индикаторы в измерителе питаются пониженным напряжением (паспортное напряжение 20...30 В), поэтому их аноды - элементы подключены к выходам счетчиков К176ИЕ4 непосредственно, без дополнительных транзисторов.

Вместо ИВ-ЗА подойдут индикаторы ИВ-б, однако они крупнее и потребляют больший ток накала катода, поэтому потребуется подобрать резисторы R7. R8. Транзистор VT1 - любой кремниевый маломощный структуры n-p-n (например, из серий КТ312, КТ315, КТ503, КТ3117). Диодные мосты VD1, VD2 - любые из серий КЦ402-КЦ405: диод VD3 - также любой из серий КД503 КД509, КД510, КД513, КД521, КД522.

Конденсаторы С4, С11 - оксидные. К50-16 или К50-35; C3 - керамический (КМ-4. КМ-5. К10-7В. К 10-47) или слюдяной, причем он должен иметь небольшой ТКЕ (МПО), поскольку от этого зависит стабильность коэффициента преобразования; остальные - любых типов, Резистор R1 состоит из двух параллельно соединенных С5 - 16В номиналом 0.2 Ом и мощностью 5 Вт. Его можно изготовить самостоятельно из отрезка толстого провода высокого сопротивления. Подстроечный резистор R4 - многооборотный СП5-2; остальные - МЛТ, С2-23, С2-33, причем R2 составлен из двух резисторов, соединенных параллельно (например, с номиналами 1 и 10 Ом).

Реле К1 использовано импортное. Best BS902CS (его обмотка имеет сопротивление 500 Ом. контакты рассчитаны на коммутацию постоянного и переменного тока до 10 А при напряжении 220 В) Оно имеет габариты 20х15х15 мм. Подходящее отечественное реле для измерителя заряда можно подобрать из группы автомобильных [3].

Трансформатор ТПП232-127/220-50 может быть заменен на любой из ряда ТЛЛ23) -127/220-50-ТПП235-127/220-50. при этом следует соединить вторичные обмотки таким образом, чтобы на диодные мосты VD1 и VD2 поступало напряжение 12... 15 В. Сетевой трансформатор можно изготовить и самостоятельно. Его наматывают на ленточном магнитопроводе ШЛ16х20 Обмотка I содержит 2400 витков провода ПЭВ-1 0.08. обмотки II и III - по 140 витков провода ПЭВ-1 0.25.

Звуковой пьезоэлектрический излучатель BF1 - любой из серии ЗП. Тумблер SA1 - П2Т или другой, рассчитанный на ток не менее 5 A; SA2 - любой. Галетные переключатели SA3 - МПН-1.

Измеритель заряда собран в пластмассовом корпусе размерами 200х80х65 мм. Детали размещены на двух платах из текстолита, монтаж выполнен навесными проводниками. На одной из них размерами 190 130 мм, прикрепленной к днищу корпуса, установлены элементы Т1. VD1. VD2. DA2. DA3, С4, С5, C11, С12, R1, R2, К1, BF1. Остальные детали распаяны на второй плате (165х45 мм), привинченной к передней панели Стабилизаторы напряжения DAI. DA2 смонтированы на теплоотводах с охлаждающей поверхностью 30...40 см2 каждый.

Калибруют устройство следующим образом. Входные контакты измерителя включают в разрыв цепи нагрузки по схеме рис. 2,а и задают рабочий ток равным 1 А. Контакты тумблера SA1 при этом должны находиться в разомкнутом положении, а тумблера SA2 - замкнутом. Измеряя многократно период следования импульсов на выходе преобразователя DA1 (вывод 7). подстроечным резистором R4 устанавливают их шес-тисекундный период. Затем проверяют точность шестиминутного периода импульсов на выходе М (вывод 10) счетчика DD1 и. если необходимо, корректируют тем же резистором.

Следует отметить, что объективно установить заряд, который должен принять аккумулятор, можно, если известна его реальная емкость и он разряжен до нижней допустимой границы.

Для определения емкости батареи собирают разрядную установку по схеме на рис. 2.6.

Максимальный постоянный ток. который можно пропускать через входную цепь в положении" 100А·ч" переключателя SA1 - 10 А. а в положении" 10 А · ч". - 1А. Если измеряемый ток имеет форму импульсов (например, при зарядке батареи аккумуляторов), то среднее значение тока нужно уменьшить до 6...7 А. иначе резистор R1 перегреется. При разомкнутых контактах тумблера SA1ток не должен превышать 1 А.

Литература

  1. Гутников В. С. Интегральная электроника в измерительных устройствах (изд. 2. перераб. и доп.) - Л. Эмергоатомиздат. Ленинградское отд. 1988. с. 269-273.
  2. Якубовский С. В., Ниссельсон Л. И., Кулешова В. И. и др. Цифровые и аналоговые интегральные микросхемы. Справочник (под ред. Якубовского С. В.). - М. Радио и связь. 1990. с. 432-445.
  3. Банников В. Малогабаритные автомобильные электромагнитные реле. - Радио. 1994. № 9., с.42; № 10. с. 41.

Автор: А.Евсеев, г.Тула

Смотрите другие статьи раздела Автомобиль. Аккумуляторы, зарядные устройства.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 12.11.2025

Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам. Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта. Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>

Дефицит кислорода усиливает выброс закиси азота 12.11.2025

Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски. Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота. В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Случайная новость из Архива

В космосе собран урожай капусты 23.02.2017

Экипаж МКС собрал первый урожай китайской капусты на орбите.

Сбор урожая из шести небольших кустиков капусты в несколько листочков каждый провела борт-инженер Пегги Уитсон, которая по прибытии на станцию помимо других дел следила за "огородом". Как отмечают в НАСА, экипажу дадут попробовать растение, но большая часть собранного урожая будет отправлена на Землю для изучения.

Семена китайской капусты Токио Бекана (Tokyo Bekana) прибыли на МКС в апреле прошлого года. Изначально одно из шести семян никак не прорастало, вероятно из-за того, что не получало достаточное количество влаги, но, как отметили руководители проекта, Уитсон добилась того, чтобы и оно взошло.

Проект по выращиванию овощей в невесомости призван разнообразить диету экипажа в будущем и подготовиться к более продолжительным и автономным миссиям, в том числе к полетам на Марс. Как отмечают в НАСА, это уже пятый сбор урожая различных овощей на орбите. При отборе культур для отправки на МКС НАСА руководствуется, прежде всего, возможностью употреблять выращенные овощи в сыром виде, а также их питательными свойствами.

Год назад астронавт НАСА Скотт Келли сообщил, что на борту МКС в первый раз распустился цветок астры-цинии.

Другие интересные новости:

▪ Полупроводниковые материалы из канализации

▪ Робот-ленивец

▪ Робот копирует годовалого ребенка

▪ Ноутбуков покупают всё меньше

▪ Искусственная сетчатка

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Детская научная лаборатория. Подборка статей

▪ статья И всюду страсти роковые, и от судеб защиты нет. Крылатое выражение

▪ статья Кто были первые монахини? Подробный ответ

▪ статья Машинист автовышки и автогидроподъемника. Типовая инструкция по охране труда

▪ статья Усилитель низкой частоты на микросхеме SI1050. Энциклопедия радиоэлектроники и электротехники

▪ статья Неугомонные зернышки. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:




Комментарии к статье:

сц55
Очень полезная статья! Но желательно использовать более современную элементную базу (в частности, светодиодные индикаторы...)


Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025