Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Стальные проводники в антеннах. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Антенны. Теория

Комментарии к статье Комментарии к статье

При выборе материала для изготовления антенн обычно отдают предпочтение меди или алюминию, так как эти металлы обладают лучшей проводимостью по сравнению, например, со сталью. Но сталь дешевле, и иногда сделать антенну из нее проще. В статье сделана оценка проигрыша при замене медных проводов проводами из стали и других материалов, приведены примеры ухудшения КПД антенн при такой замене. Рассмотрены причины высокочастотных потерь в проводах из стали, описана методика измерения погонного активного сопротивления проводов из материала с неизвестными свойствами в диапазоне 3,5...28 МГц, а также даны рекомендации по компьютерному моделированию проволочных и вибраторных антенн из стали.

Традиционные материалы для антенн - медь (провода) и сплавы алюминия (трубки). Их достоинство в хорошей проводимости. К недостаткам относятся малая механическая прочность и, в последние годы, высокая стоимость.

Опыт использования стальных конструкций в качестве вторичных элементов антенных систем свидетельствует о возможности применения дешевых и прочных сталей как одного из основных материалов для изготовления антенн. Радиолюбители применяют атмосферостойкие биметаллические сталемедные провода (БСМ), а также гибкий проводе полиэтиленовой изоляцией (ГСП) [1], имеющий наряду с медными стальные жилки. В связи с этим представляет интерес оценка потерь при замене сталью традиционных меди или алюминия.

В качестве меры оценки было принято отношение активной составляющей R погонного сопротивления провода круглого сечения из исследуемого материала на высокой частоте к соответствующей величине RM для медного провода такого же диаметра при той же частоте: R/RM.

Как известно, высокочастотный электрический ток распределен неравномерно по сечению провода: он максимален у поверхности и быстро убывает при удалении от нее вглубь материала (поверхностный эффект). Для проводов диаметром более 1мм при частотах выше 1 МГц эффективная толщина поверхностного слоя, в котором сосредоточен ток (глубина проникновения), определяется по формуле [2]:

где f - частота (Гц); δ - удельная проводимость материала (См/м); μr - относительная магнитная проницаемость материала; μ0 = 4π·10-7 (Гн/м). Эффективное сечение провода диаметром d (м) для тока радиочастоты составляет s = 5πd (м2), а погонное активное сопротивление

В табл. 1 приведены значения δ, р и μr некоторых проводниковых материалов.

Стальные проводники в антеннах

У неферромагнитных проводников μr - 1, и формула (2) достаточна для сравнения погонного сопротивления проводов, например, из алюминия и меди. Искомая мера вычисляется просто: R/RM = = √δM/δ. Так, например, для алюминия получаем: R/RM = √56,6/35,3 = 1,265. Для ферромагнитных материалов (μr >> 1) все намного сложнее. Дело в том, что с ростом частоты μr быстро уменьшается, стремясь к единице, а в материале растут потери, в частности пропорционально квадрату частоты увеличиваются потери на вихревые токи. Уменьшение μr приводит к утолщению поверхностного слоя, т. е. к уменьшению сопротивления, а рост потерь эквивалентен увеличению сопротивления. В результате потери перевешивают и погонное сопротивление все же увеличивается с повышением частоты. Все можно было бы учесть (хотя и не просто), если бы точно знать химический состав и структуру сплава. А поскольку это редко бывает известно, остается обратиться к старому критерию истины - к практике.

Погонное сопротивление медного провода RM определялось расчетом по формуле (2). Для определения погонного сопротивления R провода из любого материала с неизвестными характеристиками использовался высокочастотный измеритель добротности (куметр) типа Е9-4.

Предварительная подготовка куметра заключалась в калибровке установки уровня на всех шкалах по критерию Q = fрез/Δf0,707- Для этого использовался нониусный конденсатор с делениями через 0,1 пФ. В результате прибор определял эквивалентную добротность Q всего измерительного контура, с учетом как потерь в испытуемой катушке индуктивности, так и прочих потерь (в самом приборе, в дополнительном внешнем конденсаторе, в окружающей среде и на излучение). Для изоляции по высокой частоте корпуса прибора от электросети и прочих проводящих объектов установлен запорный дроссель, содержащий 20 витков из трехпроводного сетевого шнура на кольцевом магнитопроводе К90х70х10 из феррита марки 400НН в месте подключения шнура к прибору. Один из проводов шнура - это провод защитного заземления (зануления) корпуса прибора. Куметр устанавливался на диэлектрической подставке высотой 0,5 м на расстоянии не менее 2 м от стен и других, в особенности проводящих, крупных предметов.

Для уменьшения ошибок измерений надо перед измерениями в течение 60 мин прогреть прибор, следить за возможным дрейфом нуля и делать несколько (хотя бы 5-7) измерений С и Q при каждой частоте с последующим усреднением. При измерениях на частотах выше 10 МГц на результат может влиять рука оператора, поворачивающая ручку конденсатора. Для точного отсчета руку следует отводить, а голову держать на расстоянии не ближе 0,5 м от прибора.

Допустим, надо определить погонное сопротивление R провода диаметром d при частоте f в пределах 3...30 МГц. Берем отрезок длиной 1 м этого провода и отрезок 1 м медного провода такого же диаметра. Делаем из этих проводов одинаковые короткозамкнутые двухпроводные линии с расстоянием между проводами 40 мм. Эти линии подключаем поочередно к прибору в качестве катушек индуктивности, при этом линии нужно установить вертикально. Измеряем добротности для линий из обоих материалов и резонансные значения емкости С по шкале куметра. При необходимости (для частот ниже 10 МГц) подключаем дополнительный конденсатор, лучше слюдяной, но для обоих материалов обязательно один и тот же. Его емкость должна быть известна с погрешностью не более ±5 %.

Далее нужно сделать несколько вычислений. Сначала рассчитаем величину общего эквивалентного последовательного сопротивления потерь rэкв в измерительном контуре (сюда входят как потери в проводе, так и прочие потери) Это делается для обоих материалов в соответствии с известным выражением для колебательного контура: rэкв = 1/(2πfCQ). При одинаковых размерах линий, при одинаковых дополнительных конденсаторах и на одной частоте указанные выше прочие потери можно принять одинаковыми для обоих материалов. А найти их можно по измерениям на медной линии, поскольку для нее известно расчетное сопротивление провода RM. Сопротивление прочих потерь, таким образом, есть разность: r пп = r ппм = r экв м - RM.

Теперь осталось вычислить сопротивление отрезка 1 м провода из испытуемого материала R = r экв - r пп и определить искомое отношение R/Rм.

Основная погрешность куметра ±5 %. Влияние возможной систематической погрешности частично скомпенсировано за счет того, что результат определения значения R содержит разность результатов измерения значений rэкв для разных материалов.

Из разных проводов диаметром от 1 до 4,5 мм и длиной 1 м были изготовлены короткозамкнутые отрезки двухпроводных линий с расстоянием между проводами 40 мм, всего - 25 образцов. Измерения производились по описанной выше методике на пяти частотах: 3,5; 7; 14; 21; 28 МГц. Результаты расчетов Rm приведены на рисунке.

Стальные проводники в антеннах

Результаты измерений погонного сопротивления R и вычисления отношений R/RM для стальных и некоторых других проводов сведены в табл. 2.

Стальные проводники в антеннах
(нажмите для увеличения)

Из табл. 2 видно, что для стальных проводов в указанном диапазоне частот погонное сопротивление увеличивалось в 15,9...24,9 раз. Для образцов с чистой и гладкой поверхностью (1, 6, 8) зависимость R/RM от частоты слабая. Загрязненность поверхности образцов 2, 3 и существенная шероховатость поверхности образца 4 определяют более значительный рост R/RM при увеличении частоты. Отжиг стальных проводов заметного влияния на потери не оказывал, если удалять окалину и очищать поверхность.

Провода из титана и немагнитной нержавеющей стали имеют примерно 2,5-кратное преимущество перед обычными стальными проводами. Биметаллический сталемедный провод 9 (БСМ) на всех частотах проигрывает чисто медному более чем в 3 раза, однако в 5...6 раз лучше чисто стального. Заметим, что при толщине медного покрытия около 0,03 мм его основное назначение - защита стальной основы от атмосферных воздействий.

В строках 10, 11 приведены данные для многожильных проводов сечением 0,5 мм2 в изоляции. Провод ГСП имеет4 медные и 3 стальные жилы диаметром 0,3 мм. По потерям на 28 МГц он оказался на уровне стального провода диаметром 4,1 мм, а на низкочастотных диапазонах значительно лучше. Монтажный провод МГШВ имеет 16 медных луженых жил диаметром 0,2 мм и более чем в 2 раза лучше, чем ГСП.

Результаты для алюминиевого провода 8 с гладкой и чистой поверхностью имеют хорошую сходимость с результатами расчета по формуле (2) и могут служить подтверждением правильности выбранного подхода.

Было произведено компьютерное моделирование с помощью программы MMANA [3]. Особенность моделирования в том, что в результате анализа определяется активная составляющая комплексного входного сопротивления антенны, а не погонного сопротивления провода. А входное сопротивление зависит от размеров антенны, ее конфигурации и места подключения источника возбуждения. Эта зависимость, однако, позволяет при относительно больших волновых размерах антенн получить практически незаметный проигрыш при замене меди сталью.

Для анализа были взяты несколько рамочных и дипольных антенн разных размеров. Результаты моделирования приведены в табл. 3.

Стальные проводники в антеннах
(нажмите для увеличения)

Сопротивление излучения R∑ получено как активная составляющая RA входного импеданса при анализе без учета потерь. Это значение Ит принималось неизменным при переходе от меди к железу, так как форма и размеры антенны не изменялись. Получены также значения RAM и RAж для антенн соответственно из меди и железа. КПД для меди и железа рассчитывался как отношение R∑ к соответствующему значению RA. Отношение Rж/Rm вычислялось по формуле:

Rж/Rm = (Raж - R∑)/(RAм - R∑)

Для всех рассмотренных антенн оказалось, что отношение Rж/RM в среднем близко к 27,8 независимо от частоты.

Так могло получиться при условии, что для расчетов с потерями в железе использовалась формула (2), например, при табличном значении удельного сопротивления = 0,0918 Ом·мм2/м и постоянном μr - 150. Такие же результаты, кстати, получаются в программе ELNEC при указанных параметрах. Судя по приведенным выше данным эксперимента, эти результаты моделирования можно использовать как оценку наихудших потерь в стальном проводе в диапазоне частот до 28 МГц. Для диапазона УКВ они будут, по-видимому, ближе к истине.

Из табл. 3 видно, что даже при такой оценке для рассмотренных случаев практически все коэффициенты ухудшения КПД значительно меньше, чем коэффициенты R/RM для стали в табл. 2. Меньший проигрыш антенны из стали будет в том случае, если Rh антенны больше (см., например, диполь 2x5,13 м при частоте 28 МГц). Электрически малые антенны с малым R∑ и исходно малым КПД для меди наиболее чувствительны к замене меди сталью.

В некоторых программах моделирования проволочных антенн (например, Nec2d, ASAP) не предусмотрен ввод магнитной проницаемости материала. По-видимому, при моделировании антенн из стали с использованием формулы (2) можно полагать μr = 1 и вводить эквивалентную проводимость δэкв (или сопротивление рэкв) с учетом реальных потерь. Для стали в диапазоне 3,5...28 МГц можно вводить соответственно δэкв = 0,19... 0.094 МСм/м (рэкв = 5,3...10,6 Ом·мм2/м) для шероховатых и загрязненных поверхностей, или δэкв = 0,22...0,17 МСм/м (рэкв = 4,5.-5,9 Ом·мм2/м) для чистых и гладких.

Программа MM AN А не позволяет моделировать разные провода из разных материалов, например, из меди и стали. Для оценки КПД антенны в этом случае можно вручную вводить в каждый сегмент медного провода, который на деле должен быть стальным, сосредоточенные потери, которые рассчитываются исходя из длины сегмента, учитывая, что погонное сопротивление провода из стали при высокой частоте в 16.. .25 раз больше, чем из меди. Например, в каждый из 10 одинаковых сегментов медного провода длиной 20 м и диаметром 2 мм при частоте 3,5 МГц можно ввести активную нагрузку величиной 16-0,08-20/10 = 2,56 Ом, где величина погонного сопротивления медного провода 0,08 Ом/м определяется по фор муле (2) и может быть найдена из графиков на рисунке.

Иногда для оценки КПД в указанной ситуации возможно уменьшение диаметра медного в модели провода (также в 16...25 раз). Однако надо помнить, что это приводит к значительному увеличению погонного индуктивного сопротивления, в результате распределение тока в структуре и все с этим связанное может сильно измениться.

Изменение КПД антенны при замене медного провода стальным зависит от волновых размеров и исходного КПД медной антенны. Если КПД полуволновой антенны из меди 0,98...0,99, то стальная антенна таких же размеров может иметь КПД 0,7...0,85, что не так уж плохо. Однако, если КПД электрически малой медной антенны порядка единиц процентов, замена меди сталью может привести к его ухудшению в 15...25 раз.

Автор благодарит Ф. Головина (RZ3TC) за постановку задачи и поддержку в работе, а также И. Каретникову за ценные замечания.

Литература

  1. Белоруссов Н. И., Саакян А. Е., Яковлеве А. И. Электрические кабели, провода и шнуры. Справочник. - М.: Энергия, 1979
  2. Гальперович Д. Я., Павлов А. А., Хренков Н. Н. Радиочастотные кабели. - М.: Энергоатомиздат, 1990.
  3. Гончаренко И. В. Компьютерное моделирование антенн. Все о программе MMANA. - М.: ИП РадиоСофт; журнал "Радио", 2002.

Автор: А.Гречихин (UA3TZ), г.Нижний Новгород

Смотрите другие статьи раздела Антенны. Теория.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Зеркальные спутники и их угрозы для астрономии и экологии 09.11.2025

Калифорнийский космический стартап Reflect Orbital, который планирует к 2030 году вывести на орбиту 4 000 зеркальных спутников, отражающих солнечный свет на Землю даже ночью. Главная цель - увеличить эффективность солнечных электростанций, обеспечивая непрерывное освещение в ночное время. Первый демонстрационный аппарат EARENDIL-1 с зеркалом площадью 334 м2 предполагается запустить в апреле 2026 года, а соответствующая заявка уже подана в Федеральную комиссию связи США (FCC). Проект получил 1,25 млн долларов поддержки от ВВС США в рамках программы для малого бизнеса. Идея заключается в том, чтобы спутники создавали дополнительное освещение для энергетических систем, однако многие ученые выражают сомнения как в технической реализуемости, так и в потенциальном вреде для окружающей среды. Астрономы, включая Майкла Брауна и Мэтью Кенворти, подсчитали, что отраженный свет будет примерно в 15 000 раз слабее дневного солнца, хотя и ярче полной Луны. Для того чтобы создать хотя бы 20% дн ...>>

Портативный твердотельный накопитель Lexar Air 09.11.2025

Компания Lexar представила портативный твердотельный накопитель Air (pSSD), сочетающий компактность, высокую скорость и надежность. Вес устройства составляет всего 19 граммов, а толщина в тончайшей части достигает всего 6 мм, что делает его одним из самых легких и тонких SSD на рынке. Накопитель выпускается в двух вариантах емкости: 512 ГБ и 1 ТБ. Версия на 1 ТБ оценивается примерно в 459 юаней (около $64), а старт продаж модели на 512 ГБ пока не объявлен. Lexar Air оснащен интерфейсом USB 3.2 Gen 1 (5 Гбит/с) и разъемом USB-C, при этом в комплект входит переходник с USB-C на USB-A для универсальной совместимости. Производитель заявляет скорость последовательного чтения до 390 МБ/с и записи до 400 МБ/с, что позволяет быстро передавать большие файлы, включая видео высокой четкости. Корпус накопителя выполнен в компактном форм-факторе, который удобно держать на ладони, а максимальная толщина не превышает 9,3 мм. Конструкция выдерживает падения с высоты до 2 метров, а для удобног ...>>

Горькие продукты улучшают работу мозга 08.11.2025

Как выяснили японские ученые, горький вкус флаванолов играет важную роль в стимуляции центральной нервной системы. Даже при минимальном усвоении этих веществ организм получает сигнал к повышению активности нейромедиаторов и улучшению когнитивных функций, что делает натуральные продукты с горьким вкусом потенциально полезными для мозга и общей физиологии. В поисках способов улучшить работу мозга ученые все чаще обращаются к натуральным соединениям, содержащимся в привычных продуктах питания. Одним из таких веществ являются флаванолы, присутствующие в какао, красном вине и ягодах. Исследователи из Технологического института Сибаура в Японии выяснили, что горький и вяжущий вкус этих соединений способен активировать мозг через вкусовые рецепторы, способствуя улучшению памяти, внимания и способности к обучению. Ранее было известно, что флаванолы защищают нейроны и поддерживают когнитивные функции, однако их биодоступность - доля вещества, поступающая в кровь - крайне низка. Это вызвал ...>>

Случайная новость из Архива

Радар снимает HD-видео 27.06.2013

Специалисты General Atomics Aeronautical Systems разработали технологию, которая позволяет снимать видео высокой четкости с помощью радара с синтезированной апертурой. Это значительное достижение, которое резко расширяет возможности военной техники. Подобные радары могут совершить революцию в военном деле, как это в свое время сделали тепловизоры.

Уникальная технология, названная VideoSAR, уже испытана на популярном радаре Lynx Block 20A весом около 50 кг. Эта РЛС используется в основном на разведывательных самолетах, например U-21, и на ударном БПЛА MQ-9 Reaper. Система VideoSAR на базе Lynx Block 20A обеспечила непрерывную передачу видеоизображения с разрешением 1080p. Испытания прототипа проходили с борта самолета King Air 200 и состоялись 25 марта 2013 года в Рамоне, штат Калифорния. Во время испытаний VideoSAR смог в высоком разрешении снять на видео широкий спектр стационарных и движущихся транспортных средств, что является важной вехой в развитии радиолокации. Более того, VideoSAR имеет режим автоматического обнаружения движущихся целей, причем радар надежно захватывает даже те объекты, которые движутся с невысокой скоростью. При это сохраняется радиолокационный видеообзор окружающей местности.

Возможно, неспециалист не может в полной мере оценить важность этого достижения. До недавнего времени радар мог отображать информацию о радиоконтрастной цели только в виде точки на экране, лишь относительно недавно появились радары, позволяющие делать фотоснимки высокого разрешения. Теперь, наконец, появился и компактный HD-видеорадар.

Преимущество VideoSAR в том, что он дает четкое изображение цели при любой погоде и в любое время суток. Он не боится засветки солнцем, видит сквозь облака, снег, дождь, дымовые завесы, легко обнаруживает радиоконтрастные цели (машина на фоне земли). Кроме того, разработаны технологии, которые позволяют проводить высокоточную радарную 3D-съемку, а также поиск замаскированных объектов, включая технику и скопления живой силы, скрытые под листвой деревьев.

Но главное: радар работает на гораздо большем расстоянии, чем тепловизор или обычная камера видимого диапазона. Это позволит использовать VideoSAR для обнаружения, идентификации и сопровождения цели на большом расстоянии, что осложнит работу средствам ПВО. Например дальность действия далеко не самого совершенного и мощного на сегодняшний день Lynx Block 20A составляет 80 км - это в 4-10 раз больше радиуса поражения ЗРК малой дальности, которые наиболее распространены на поле боя.

Другие интересные новости:

▪ К 2030 году каждый пятый автомобиль в Японии будет беспилотным

▪ Озон против кариеса

▪ Очки с музыкой

▪ Самолет без вредных выбросов

▪ Уровень мирового океана повышается за счет подземных вод

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Справочные материалы. Подборка статей

▪ статья Порядок оценки устойчивости функционирования объектов экономики при воздействии поражающих факторов. Основы безопасной жизнедеятельности

▪ статья Сколько лет самым молодым звездам? Подробный ответ

▪ статья Розелла. Легенды, выращивание, способы применения

▪ статья Восстановление работоспособности светодиодных автоламп. Энциклопедия радиоэлектроники и электротехники

▪ статья Отсутствующая карта. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025