Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Антенноскоп - высокочастотный измерительный мост. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Антенны. Измерения, настройка, согласование

Комментарии к статье Комментарии к статье

При настройке антенн в радиолюбительской практике используют мостовые измерители двух типов: неуравновешенные и уравновешенные. Первые известны как КСВ-метры и получили относительно широкое распространение. Вторые в литературе обычно называют антенноскопами. Они встречаются реже, хотя позволяют получить об антенно-фидерном тракте радиостанции некоторую дополнительную (по сравнению с КСВ-метрами) информацию, анализ которой может облегчить его настройку.

Для изготовления антенноскопа радиолюбители обычно используют удачную конструкцию, описание которой было приведено в популярной книге К. Ротхаммеля (Антенны. Пер. с нем. - 3-е изд. перераб. и доп. - М.: Энергия, 1979. МРБ, вып. 998). Прибор, о котором пойдет речь в этой статье, отличается от него более удобной балансировкой моста и более точным определением сопротивления, соответствующего балансу моста.

Принципиальная схема прибора для измерений в антенно-фидерном тракте радиостанции, состоящего из измерительного генератора и уравновешенного моста, изображена на рис. 1. Собственно мост с индикатором баланса представляют собой отдельный узел, который работает в широкой полосе частот. Верхняя частотная граница определяется конструкцией моста (паразитными емкостями и индуктивностями) и в обычном исполнении без труда достигает значения 30...50 МГц.

Антенноскоп - высокочастотный измерительный мост

Мост может использоваться с внешним генератором, обеспечивающим на нем высокочастотное напряжение несколько вольт. Для этих целей подойдет и собственно радиостанция, но уровень ее мощности надо уменьшить до требуемых значений - регулятором уровня (если он есть) или дополнительным аттенюатором. Однако, если необходимо работать в полевых условиях, мост целесообразно объединить в одном приборе с генератором, который питается от автономного источника. Именно такой его вариант, предназначенный для измерений в Си-Би диапазоне, и описан в статье.

В отличие от распространенных конструкций антенноскопов в этом приборе балансировка моста осуществляется двумя последовательно включенными резисторами, что позволяет точнее произвести эту операцию. Наличие двух резисторов практически исключает возможность отсчета сопротивления, соответствующего балансу моста, по шкале прибора. В приборе для определения этого сопротивления предусмотрено его измерение с помощью внешнего омметра.

ВЧ напряжение от генератора поступает в точку соединения резисторов R5, R6, образующих верхние плечи моста. Соединенные последовательно резисторы R7 и R8 составляют регулируемое плечо, а измеряемым является входное сопротивление антенны или антенно-фидерной системы, подключаемых к прибору через гнездо XW1 "RX".

Как видно из схемы, регулируемое плечо R7R8 соединено с мостом через переключатель SA1.1. Он позволяет подключать это плечо и к гнезду XS2 для измерения установленного при балансе суммарного сопротивления резисторов с помощью омметра (мультиметра). В измерительную диагональ цепь VD1C9, со средней точкой которой соединена цепь VD2R9C8R10 со стрелочным индикатором баланса PA1 (R10 - регулятор его чувствительности).

Еще одно отличие этого моста от упоминавшегося выше антенноскопа из книги К. Ротхамеля - он питается ВЧ напряжением относительно общего провода. С ним же соединены нижнее плечо моста (R8), оплетка коаксиального кабеля и противовес антенны (через гнездо XW1), а также измерительная цепь индикатора баланса PA1. Благодаря такому решению уменьшается влияние тела оператора на результаты измерений.

Встроенный генератор собран на транзисторе VT1 с колебательным контуром L1C1 в коллекторной цепи и кварцевым резонатором ZQ1 в цепи базы. С катушки связи L2, индуктивно связанной с L1, ВЧ напряжение с генератора подается на вход усилителя мощности, выполненного на транзисторе VT2. Резистор R4 ограничивает его ток базы, дроссель L3 является коллекторной нагрузкой, а последовательный колебательный контур L4С7 служит для установки необходимого уровня ВЧ напряжения питания измерительного моста.

Генератор и усилитель питаются постоянным током от стабилизатора напряжения DA1. Внешний источник должен обеспечивать напряжение 12...15 В при токе нагрузки до 100 мА. Его подключают через гнездо XS1. Светодиоды HL1 и HL2 - индикаторы подачи питания на прибор и режимов его работы. В режиме "Отсчет", т. е. при измерении суммарного сопротивления резисторов R7 и R8 выносным омметром, питание отключается во избежание перегрузки индикатора PA1, возникающей при резком разбалансе моста вследствие отключения регулируемого плеча.

Прибор выполнен в металлическом корпусе размерами 130х80х40 мм. В "полевых" условиях (на автомобиле, на катере) его питают от бортовой сети транспортного средства, а в домашних - от аккумуляторной батареи или сетевого блока питания трансивера. Все органы управления выведены на лицевую панель, а гнезда - на боковые стенки. Остальные детали смонтированы на двух печатных платах из фольгированного стеклотекстолита, чертежи которых показаны на рис. 2 (узел А1) и 3 (узел А2). Все соединения выполнены короткими жесткими проводами, плата А1 помещена в отдельный металлический экран из листовой латуни толщиной 0,5 мм.

Антенноскоп - высокочастотный измерительный мост Антенноскоп - высокочастотный измерительный мост

При монтаже использованы постоянные резисторы МЛТ, конденсаторы К50-35 (С5), КТ, КД и КМ (остальные). Переменные резисторы R10 - СП3-4аМ, R7 - сдвоенный СП3-3дМ с номинальным сопротивлением 1 кОм (секции соединены параллельно), R8 - СП2-3а. Номинальные сопротивления резисторов R5 и R6 (примерно 200 Ом) некритичны, однако важно, чтобы они были одинаковыми (допустимое отклонение - не более 5 %). Суммарное сопротивление резисторов R7 и R8 (600 выбрано исходя из возможных значений входных сопротивлений большинства антенн. Кварцевый резонатор ZQ1 - любой малогабаритный с собственной частотой (или третьей гармоники), соответствующей частоте одного из средних (15-25) каналов поддиапазона (сетки) "С" Си-Би.

Катушки L1, L2 и L4 намотаны проводом ПЭВ 0,31 на полистироловых каркасах диаметром 7,5 мм с подстроечниками СЦР-1 из карбонильного железа. L1 содержит 12, L2 (намотана поверх L1) - 4, L4 - 10 витков. Дроссель L3 - унифицированный ДМ-0,1 с индуктивностью 20 мкГн.

Высокочастотное гнездо XW1 - СР-50-73П8, XS1 и XS2 - любые низкочастотные экранированные. Переключатель SA1 - малогабаритный тумблер любого типа на два положения и два направления.

При повторении прибора для работы на других диапазонах надо изменить все элементы, влияющие на его частотные характеристики (кварцевый резонатор, катушки и конденсаторы колебательных контуров).

При налаживании прибора вращением подстроечника катушки L1 настраивают контур L1C1 на частоту кварцевого резонатора. Далее устанавливают ВЧ напряжение на измерительном мосте. Для этого вместо последнего к конденсатору С6 подключают постоянный резистор сопротивлением 120...130 Ом с рассеиваемой мощностью 0,5...1 Вт и, изменяя подстроечником индуктивность катушки L4, устанавливают на нем ВЧ напряжение 9...10 В. В заключение удаляют резистор и восстанавливают соединение конденсатора С6 с мостом.

Перед пользованием прибором движок переменного резистора R10 необходимо установить в положение, соответствующее минимальной чувствительности PA1 (по схеме нижнее), а переключатель SA1 - в положение "Отсчет". Затем к гнезду XS1 подключают источник питания (при этом должен загореться светодиод HL2), к гнезду XS2 - мультиметр в режиме измерения сопротивлений от 0 до 600 Ом, а к XW1 - согласуемую антенну с неизвестным входным сопротивлением RA. Далее переключатель SA1 переводят в положение "Баланс" (загорается светодиод HL1) и изменением сопротивления введенных частей переменных резисторов R7 (грубо) и R8 (точно) добиваются минимума показаний микроамперметра PA1, одновременно повышая его чувствительность уменьшением сопротивления резистора R10. Минимальное показание при максимальной чувствительности прибора соответствует точному балансу моста. После этого переключатель возвращают в положение "Отсчет" и по показанию омметра определяют суммарное сопротивление резисторов R7, R8. Закончив измерения, переводят движок резистора R10 в исходное положение и выключают питание.

В общем случае входное сопротивление антенно-фидерного тракта при КСВ, не равном 1, имеет как активную, так и реактивную составляющие. Поскольку антенноскоп не имеет в регулируемом плече элементов компенсации реактивной составляющей, то в отдельных случаях минимум, соответствующий балансу моста, может быть не очень глубоким. Но тем не менее значение сопротивления, полученное в результате измерений антенноскопом, близко к значению активной составляющей входного сопротивления антенно-фидерного тракта. Его можно использовать при настройки антенны для оценки степени согласования передатчика с антенно-фидерным трактом и для улучшения степени согласования.

Авторы: Л.Никольский, Б.Татарко, г.Тверь

Смотрите другие статьи раздела Антенны. Измерения, настройка, согласование.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Открыт обращаемый драйвер старения 04.10.2025

Недавняя работа ученых из Сямэньского университета в Китае показала, что в гипоталамусе, главном регуляторе внутренних функций организма, кроется один из ключей к продлению молодости. Команда под руководством Лиге Ленга обнаружила, что снижение уровня белка менина в гипоталамусе связано с ускорением процессов старения. Менин, как выяснилось, играет важную роль в предотвращении воспаления и поддержании нормальной работы нейронов. Когда его уровень снижается, в мозге возрастает активность воспалительных сигналов, что запускает цепную реакцию возрастных изменений во всем организме - от ослабления когнитивных функций до потери плотности костей и истончения кожи. Чтобы понять, как именно менин влияет на старение, ученые вывели генномодифицированных мышей, у которых этот белок можно было выборочно отключить. Даже у молодых животных такое вмешательство быстро привело к ухудшению памяти, снижению прочности костей и эластичности кожи, а также к укорочению жизни. Эти результаты убедительно ...>>

Твердотельные батареи Panasonic 04.10.2025

Твердотельные аккумуляторы считаются следующим шагом в эволюции энергосистем: в отличие от традиционных литиево-ионных, они не содержат жидкого электролита, что существенно снижает риск возгорания и утечки. Именно на это делает ставку Panasonic, намереваясь завершить подготовку первых образцов к марту 2027 года, то есть к концу 2027 финансового года. Как сообщил технический директор подразделения Panasonic Energy Сеичиро Ватанабе, после выпуска опытных моделей клиенты проведут тесты, которые могут занять около двух лет, прежде чем начнется полноценное серийное производство. Хотя основным направлением для компании по-прежнему остаются литиево-ионные аккумуляторы, Panasonic стремится использовать свой опыт в сфере электромобильных технологий, чтобы выйти на новые рынки - прежде всего в области роботов и промышленных систем. На этом направлении японская корпорация намерена соперничать с такими компаниями, как TDK, уже закрепившимися в сегменте твердотельных решений. Интерес к новой ...>>

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Случайная новость из Архива

MAX77950 - универсальный приемник беспроводной энергии 29.09.2018

Компания Maxim Integrated анонсировала новую микросхему MAX77950, которая предназначена для создания приемника в системе беспроводной передачи энергии. MAX77950 полностью соответствует стандартам беспроводных зарядных устройств WPC малой мощности (v1.2) и PMA SR1 (v2.0), то есть, способна производить частотную демодуляцию получаемых посылок (FSK - Frequency Shift Keying) в соответствии с этими стандартами.

Данное решение предназначено для реализации индуктивного метода приема энергии и обеспечивает до 12 Вт выходной мощности. MAX77950 имеет точную установку выходного тока и схему измерения напряжения во всем диапазоне нагрузок.

Отличительной особенностью данного решения является то, что благодаря запатентованной функции PeerPower, микросхема MAX77950 может работать в качестве устройства-передатчика энергии. При этом, общение между микросхемами происходит с помощью внутриполосной амплитудной модуляции (ASK - Amplitude Shift Keying). Программирование микросхемы осуществляется с помощью I2C последовательного интерфейса. Настройка, статус передачи энергии и всевозможные ошибки считываются по этому интерфейсу.

Для заказа доступна оценочная плата MAX77950EVKIT. Из двух отладочных плат можно создать систему из устройств приемника и передатчика. Запустить и протестировать отладочную плату можно с помощью графического интерфейса пользователя GUI.

Технические особенности MAX77950:

соответствие двум самым распространенным стандартам в мире по беспроводной передачи энергии - WPC/PMA;
функция PeerPower обеспечивает работу микросхемы в качестве передатчика энергии;
выходное напряжение настраивается от 3.5 до 12.7 В с шагом 100 мВ;
интегрированный синхронный выпрямитель по схеме полный мост;
программируемая функция обнаружения посторонних предметов (FOD - Foreign Object Detection);
реализация защиты от перенапряжения, температуры, превышения тока и короткого замыкания;
корпус WLP52.

Другие интересные новости:

▪ Наноохлаждение

▪ Хранение углерода в океане

▪ Беспилотные аппараты сами построили мост

▪ В США раздадут земли под установку солнечных панелей

▪ Пьезокерамика без свинца

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Электропитание. Подборка статей

▪ статья Не мытьем, так катаньем. Крылатое выражение

▪ статья Какая надпись на упаковках растительного масла бессмысленна? Подробный ответ

▪ статья Тимьян ползучий. Легенды, выращивание, способы применения

▪ статья Теория: расчет колебательных контуров. Энциклопедия радиоэлектроники и электротехники

▪ статья Прилипание к воде. Физический эксперимент

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025