Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Малогабаритный индикатор наведения спутниковой антенны. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Антенны телевизионные

Комментарии к статье Комментарии к статье

Разработанные конструктором И. Нечаевым приборы и устройства получают самый теплый отклик у наших читателей. Особенно понравились радиолюбителям простые по конструкции высокочастотные устройства - генератор качающейся частоты в виде приставки к обычному осциллографу, прибор для настройки аппаратуры НТВ. Поскольку увлечение приемом спутниковых программ становится наиболее популярным у любителей телевизионной техники, по многочисленным просьбам читателей автор разработал простой малогабаритный индикатор для наведения параболических антенн на спутник, которым удобно пользоваться непосредственно в точке установки антенны.

Малогабаритный индикатор предназначен для точного наведения параболической антенны на геостационарный спутник. Он работает совместно с конвертером диапазонов 11 и 12 ГГц с диапазоном промежуточных частот 0,85...1,9 ГГц. Минимальный уровень индицируемого сигнала - 50 мкВ. Питается прибор, а также конвертер, либо от автономного источника напряжением 12...20 В, либо от ресивера приемной спутниковой системы по кабелю снижения.

Особенностью данной конструкции является селективность, и в отличии от аналогичной, описанной в [1], она позволяет не только настраиваться на максимум сигнала, но и проводить анализ частотной загрузки диапазона ПЧ выходного сигнала конвертера, что дает возможность с большой достоверностью определить спутник, на который проведена настройка антенны. Это свойство очень важно, так как совершить начальную ошибку ориентации всего в несколько градусов - элементарно, обилие же и близкое позиционное расположение спутников может привести к тому, что вы настроитесь не на искомый, а на соседний спутник. Поэтому надежная настройка антенны обычно невозможна без визуального контроля за принимаемыми программами с помощью ресивера и телевизора, а это в свою очередь требует связи между оператором у антенны и наблюдателем у телевизора, что не всегда удобно или возможно.

Принципиальная схема прибора приведена на рис.1. Он построен по схеме супергетеродинного приемника с нулевой промежуточной частотой. В его СВЧ часть входит управляемый током генератор диапазона 0,85...1,9 ГГц, собранный на транзисторах VT3, VT4 [2], буферный каскад на VT2 и смеситель на VT1. В тракт ПЧ входит УПЧ на транзисторах VT5 - VT7 и детектор на диодах VD1, VD2.

Малогабаритный индикатор наведения спутниковой антенны
(нажмите для увеличения)

Уровень сигнала индицируется микроамперметром РА1. Чувствительность оперативно регулируется резистором R9.

На транзисторах VT9, VT10 и стабилитроне VD3 собран параметрический стабилизатор напряжения, на транзисторе VT8 - регулируемый источник тока для питания генератора. Частота генератора изменяется за счет изменения тока с помощью резистора R17.

Устройство работает следующим образом. Сигнал СВЧ с выхода конвертера через гнездо XW1 поступает на вход смесителя - базу транзистора VT1, одновременно на эмиттер этого транзистора поступает сигнал генератора. Сигнал ПЧ выделяется на резисторе R5 и поступает на вход первого каскада УПЧ на транзисторе VT5, затем - на регулятор уровня на потенциометре R9, а с него - на оконечный каскад на транзисторах VT6, VT7.

Полоса пропускания УПЧ примерно от 0,1 до 10 МГц. А так как приемник имеет нулевую центральную ПЧ, то общая полоса пропускания составляет около 20 МГц, что примерно соответствует полосе частот одного спутникового телевизионного канала. Из-за того, что у спутникового сигнала частотная модуляция, его энергия сосредоточена не на одной частоте, а как бы "размазана" в некоторой полосе частот. Именно ее и усиливает УПЧ, а затем сигнал детектируется и поступает на индикатор уровня - микроамперметр РА1.

Для создания нормальных условий работы при плохом освещении в устройство введены лампы подсветки, которые включаются переключателем SA2. Для контроля питающего напряжения служит переключатель SA4. Он подключает микроамперметр к шине питания через резистор R21. Включение питания конвертера выполняется переключателем SA1, а переключение режимов работы - переключателем SA3: в верхнем его положении устройство выключено, в среднем - питается от автономного источника (батареи аккумуляторов или сетевого блока питания), который подключается к гнезду XS1, а в нижнем - питание осуществляется от ресивера через кабель снижения. К гнезду XW1 подключается конвертер, а к XW2 - кабель снижения.

Питание конвертера производится через фильтр L1C4, а при питании от ресивера напряжение на устройство и конвертер поступает через фильтр L2C7.

Конструктивно устройство выполнено так. Его основу составляет печатная плата из двухстороннего фольгированного стеклотекстолита толщиной 1,5 мм. Одновременно она выполняет роль передней панели, на которой размещено большинство деталей (кроме деталей УПЧ), все переключатели, микроамперметр, а также гнезда XW1, XW2 (на металлических уголках). Эскиз платы приведен на рис.2. Ее вторая сторона оставлена металлизированной и соединена пропайкой по контуру с общей шиной питания первой стороны.

Малогабаритный индикатор наведения спутниковой антенны

УПЧ собран на отдельной печатной плате (рис.3). Она закреплена непосредственно на микроамперметре с помощью клея и соединена с общим проводом в нескольких местах.

Малогабаритный индикатор наведения спутниковой антенны

В устройстве можно применить следующие детали: транзисторы VT1, VT2 - КТ3123А-2, КТ3123Б-2, КТ3123В-2; VT3, VT4 - КТ3132А-2, КТ3132Б-2, КТ3124А-2, КТ3124Б-2; VT6, VT7 - КТ316, КТ315 с буквенными индексами от А до Д; VT8 - КП302Б,В, КП307А; VT9 - КТ815, КТ816 с буквенными индексами от А до Г и аналогичные; VT10 - КП303Г, КП303Д.

В СВЧ части надо применить бескорпусные конденсаторы - К10-17, К10-42 и высокочастотные резисторы С2-10, РН1-12, в остальных можно использовать КМ, КЛС и аналогичные импортные. Подстроечный резистор - СПЗ-19, переменные - СПО, СП4. Постоянные резисторы - МЛТ, С2-33.

Катушки L1 - L3 намотаны проводом ПЭВ-2 0,4 на оправке 3 мм и содержат по 7...9 витков. Катушки L4, L5 выполнены в виде полосковых линий (см. рис.2) - они аналогичны тем, что были подробно описаны в [2]. Катушка L6 - нормализованный дроссель типа ДМ-0,1, его индуктивность может быть выбрана в пределах 200...500 мкГ.

Диоды - любые высокочастотные маломощные, желательно германиевые или с барьером Шоттки, стабилитрон - маломощный на напряжение стабилизации 10...12 В.

Переключатели и гнездо XS1 - любые малогабаритные, лампы накаливания - СМН 6,3-20, микроамперметр - М4762-М1 с током полного отклонения 200 мкА.

При монтаже СВЧ части выводы деталей надо делать минимально возможной длины. Если использовать корпус другой конфигурации, то печатную плату можно переделать, выполнив ее в произвольном виде (кроме СВЧ части).

Налаживание следует начать с настройки СВЧ генератора. Для этого лучше использовать частотомер с рабочей частотой до 2 ГГц, его подключают к коллектору транзистора VT2. В левом по схеме положении резистора R17 подбором резистора R16 устанавливают нижнюю граничную частоту перестройки, а выбором номинала резистора R17 выбирают диапазон перестройки. В авторском экземпляре устройства частота генератора изменялась от 700 МГц до 2 ГГц при изменении тока через транзисторы VT3, VT4 от 13 до 0,8 мА. Для получения более плавной настройки придется подобрать резистор R17 с малым скачком начального сопротивления и логарифмической характеристикой.

Если у вас нет частотомера, для настройки можно использовать ресивер. Для этого его вход подключают к входу устройства (гнездо XW1). Ресивер перестраивают по частоте, и резистором R17 на ту же частоту настраивают генератор, момент настройки определяется появлением сигнала в виде помехи на экране телевизора. Таким образом можно и отградуировать шкалу этого резистора.

Затем резистор R9 устанавливают в верхнее по схеме положение и резистором R18 устанавливают такой уровень собственных шумов, чтобы стрелка стрелочного прибора слегка отклонялась. После этого желательно проверить чувствительность и диапазон перестройки с помощью измерительного СВЧ генератора. Если это сделать невозможно, надо подключить устройство к конвертеру, установленному на настроенную антенну. Шумы должны увеличиться, и после этого, перестраивая устройство по частоте, настраиваются на спутниковые каналы.

Если стрелка зашкаливает, то резистором R9 усиление надо уменьшить. Настроившись на слабый сигнал, далеко отстоящий от более мощных, подбором резистора R3 добиваются максимальной чувствительности. Для удобства пользования на шкале делают отметки наиболее часто принимаемых спутниковых телевизионных программ, например, "НТВ-плюс" или "Eurosport", для разных поляризаций. Бывает, что без подключения к конвертеру стрелка постоянно зашкаливает при любом положении R9 или зашкаливает в определенных участках диапазона - это означает, что, скорее всего, устройство самовозбуждается. Придется тщательнее провести монтаж, уменьшить длину соединительных проводов и, возможно, увеличить емкость блокировочных конденсаторов.

При наличии измерительного генератора шкалу прибора можно проградуировать в единицах напряжения, в этом случае резистор R9 надо заменить на переключатель с резистивным делителем, который будет выполнять функции фиксированного аттенюатора.

Литература

  1. Жук В. Индикатор наведения антенны на спутник. - Радио, 1994, № 12, с. 4, 5.
  2. Нечаев И. Приставка-ГКЧ для диапазонов 300...900 и 800...1950 МГц. - Радио, 1995, №1, с. 33.
  3. Нечаев И. Прибор для настройки аппаратуры НТВ. - Радио, 1998, № 3, с. 10 - 12; №4, с.14, 15.

Автор: И.Нечаев, г.Курск

Смотрите другие статьи раздела Антенны телевизионные.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Почтовый космический корабль Arc 03.10.2025

Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение. Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом. Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>

Лазерное обогащение урана 02.10.2025

Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана. Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций. GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>

Случайная новость из Архива

Синтез алмазоподобного азота 20.10.2024

Ученые из Китайской академии наук под руководством профессора Сяньлун Вана сделали важное открытие в области материаловедения, успешно синтезировав кубический гетерогенный азот (cg-N) при атмосферном давлении. Этот материал привлекает внимание своими уникальными свойствами и возможностью создания высокоэнергетических материалов, что может иметь значительное практическое применение в будущем.

Cg-N представляет собой чистый азот, в котором атомы связаны одинарными связями NN, что делает его структуру схожей с алмазной решеткой. Это означает, что данный материал обладает высокой плотностью энергии, что делает его крайне перспективным для использования в энергетике и других высокотехнологичных отраслях. При разложении cg-N образуется только газообразный азот, что является важным экологическим преимуществом этого материала.

Долгое время создание cg-N при нормальных условиях давления оставалось сложной задачей. Однако ученым удалось преодолеть этот барьер благодаря использованию метода химического плазменного осаждения из газовой фазы (PECVD). Для синтеза был выбран азид калия (KN3), который отличается меньшей токсичностью и взрывоопасностью по сравнению с другими прекурсорами. Благодаря способности калия переносить электроны, исследователи смогли создать стабильную структуру cg-N без использования дополнительных стабилизирующих материалов, таких как углеродные нанотрубки.

Стабильность cg-N при различных температурах и давлениях была одной из главных задач исследования. С 2020 года группа ученых использовала вычислительные методы для моделирования поведения cg-N в условиях низкого давления. Результаты показали, что нестабильность на поверхности материала может вызывать его разложение при низких давлениях. Однако насыщение поверхностных связей и перенос заряда позволили стабилизировать структуру до 750 K при атмосферном давлении, что стало важным шагом в синтезе материала.

В ходе экспериментов, проведенных с использованием метода термогравиметрической дифференциальной сканирующей калориметрии (TG-DSC), было подтверждено, что синтезированный cg-N обладает термической стабильностью до 760 K. Это открывает возможности для использования материала в более экстремальных условиях. При этом разложение cg-N происходит быстро и интенсивно, что подтверждает его высокую энергетическую плотность.

Новое исследование предлагает удобный и эффективный способ синтеза cg-N при атмосферном давлении, что ранее считалось сложной задачей. Это открытие не только расширяет наши знания о материалах с высокой энергетической плотностью, но и предоставляет новые перспективы для разработки безопасных и экологичных материалов будущего.

Материалы, подобные cg-N, могут найти применение в широком спектре областей - от энергетики до оборонной промышленности. Ученые продолжают изучать свойства этого уникального материала, и в будущем это может привести к созданию новых поколений энергоемких устройств и технологий.

Другие интересные новости:

▪ Египетский боулинг

▪ 192-ядерный процессор для смартфонов и планшетов

▪ Свет вредит микросхемам

▪ Искусственный фотосинтез

▪ Дисплей для слепых

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Радио - начинающим. Подборка статей

▪ статья Люстра Чижевского. История изобретения и производства

▪ статья Как появился огонь? Подробный ответ

▪ статья Слесарь по монтажу газобалонного оборудования на автомобиль. Типовая инструкция по охране труда

▪ статья Практическое применение операционных усилителей. Часть первая. Энциклопедия радиоэлектроники и электротехники

▪ статья Внимание, скорость! Химический опыт. Химический опыт

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025