Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Доработка антенны Baofeng UV-5R. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Антенны УКВ

Комментарии к статье Комментарии к статье

У трансивера Baofeng UV-5R его штатная антенна нуждается в доработке: и настроена она неточно, и потери на диапазоне 144 МГц велики. Ее несложно модифицировать так, чтобы она нормально работала на обоих диапазонах этого трансивера.

Доработку начинают с разборки антенны. Для этого ее надо отсоединить от трансивера и подержать 10...15 мин в горячей воде (подойдет закипевший чайник). Затем, держа антенну за разъем и аккуратно пошатывая (но не вращая вокруг оси), снимают пластиковый чехол. Собственно антенна чем-то вроде силикона приклеена внутри к чехлу в верхней его части, поэтому если снять его не получается, надо посильнее покачать чехол в верхней части.

Когда чехол снят, у вас останется стальная пружина с желтоватым покрытием, накрученная на корпус разъема, с маленьким конденсатором внутри. По электрической схеме это укороченный сворачиванием в катушку λ/4 GP на 144 МГц (согласование - отвод от этой катушки) и удлиненный примерно до 0,35λ GP на 432 МГц, согласованный последовательно включенным конденсатором.

Становится ясно, почему греется нижняя часть антенны при работе на передачу на 144 МГц. Ведь это, по сути, катушка согласующего устройства (СУ), согласующая низкое (несколько ом) сопротивление излучения короткого GP И сделать катушку такого СУ из оцинкованной стальной проволоки - плохая идея. Добротность получится низкой (проводимость цинка почти вчетверо хуже, чем меди), и катушка будет греться. Что и наблюдается на практике: при работе на передачу в диапазоне 144 МГц нижняя часть антенны через несколько минут нагревается до 45...55 оС. И это именно нагрев антенны из-за тепловых потерь в ней, а не теплопередача от шасси трансивера. Чтобы убедиться в этом, достаточно выкрутить антенну - она существенно горячее, чем шасси.

Другое слабое место штатной антенны - конденсатор. Во-первых, он очень маленький керамический, что вносит потери и ограничивает допустимую мощность. Во-вторых, его тонкие проволочные выводы припаяны с одной стороны к разъему, с другой - к спирали антенны. А это может привести к механическому разрушению этого конденсатора после нескольких вкручиваний-выкручиваний антенны. Ведь низ стальной пружины антенны не припаян, а просто "навинчен" на корпус разъема, т. е. может немного проворачиваться относительно вертикальной оси вместе с припаянным к нему выводом конденсатора. Именно это и происходит, если при вкручивании-выкручивании держать антенну не за нижнюю часть, а за середину. А другой вывод конденсатора впаян в разъем, а жесткости конструкции конденсатора и его выводов не хватает, чтобы трубочка разъема поворачивалась бы вслед за пружиной антенны. Выводы конденсатора скручиваются, он повреждается механически. Описания случаев поломки этого конденсатора нередки.

Этот конденсатор надо заменить более надежным - электрически и механически. Проще всего сделать конструктивный конденсатор из коаксиального кабеля. Для этого потребуется отрезок длиной 42...45 мм полужесткого кабеля с фторопластовой изоляцией (например, HF086). Сняв трубку оплетки примерно на 2...4 мм, оголяют центральную жилу и впаивают ее в разъем. Надевают на кабель и хвостовик разъема термоусаживаемую трубку длиной 35 мм. Нагревают ее так, чтобы последний 1 см оплетки остался бы незакрытым трубкой. Отступив примерно на 30 мм от разъема, к оплетке припаивают кусок голого луженого провода диаметром 0,5...0,8 мм длиной 10...12 мм, обернув его кольцом вокруг оплетки. Примерно 5 мм этого выводаоставляют свободно выступающим перпендикулярно поверхности коаксиального кабеля.

Выше припаянного кольца на кабель надевают еще кусочек термоусаживаемой трубки длиной 10 мм и обжигают ее. Получился конденсатор емкостью 4 пФ с фторопластовой изоляцией (низкие потери) и механически прочный. Даже если потом пружина антенны будет проворачиваться относительно разъема, припаянная к нему центральная жила из сплошного и относительно толстого провода просто провернется во фторопластовой изоляции кабеля без негативных последствий.

Теперь займемся потерями в катушке. Обезжирив спираль антенны и сняв с ее верха остатки силикона, посеребрим стальную пружину. Старинный способ погружением в отработанный фиксаж сейчас вряд ли получится: уж нет и фотопленок и фиксажа для них. А вот соли серебра для серебрения в водном растворе найти можно.

Для этого достаточно одной пробирки раствора: вначале серебрят нижнюю часть антенны, потом переворачивают и опускают в раствор верхнюю. После серебрения натирают спираль фланелевой тряпочкой до блеска. При этом надо беречь руки: черные хлопья излишнего серебра, снимаемые тряпочкой, потом плохо отмываются от кожи. "Для красоты" можно еще и покрыть спираль тонким слоем бесцветного нитролака.

Наверное, вместо серебрения можно просто облудить спираль хорошим припоем, но автор это не пробовал.

Теперь надевают спираль на разъем и плотно накручивают ее. Затем пинцетом извлекают наружу торчащий свободный вывод провода и припаивают его (при настройке точку подключения возможно придется изменить) к 16-му витку спирали, считая снизу (рис. 1).

Доработка антенны Baofeng UV-5R
Рис. 1. Спираль антенны

Для настройки потребуется поджимать и растягивать спираль (наверняка), менять точку подключения нашего конденсатора из отрезка кабеля к спирали (максимум плюс-минус 1 виток, но этого может и не потребоваться), емкость этого конденсатора, т. е. длину кабеля (скорее всего, до этого дело не дойдет).

Настраивать по минимуму КСВ следует примерно на 1 МГц выше желаемой частоты на диапазоне 144 МГц и на 3...5 МГц выше в диапазоне 432 МГц. Потом, когда наденете чехол, из-за влияния пластика частоты соответственно понизятся. На рис. 2 и рис. 3 приведены зависимости КСВ от частоты для модифицированной антенны.

Доработка антенны Baofeng UV-5R
Рис. 2. Зависимости КСВ от частоты

Доработка антенны Baofeng UV-5R
Рис. 3. Зависимости КСВ от частоты

После доработки антенна на 144 МГц существенно меньше греется, а репитеры стали открываться и из тех проблемных мест (например, внутри железобетонного дома), из которых с исходной антенной они не открывались.

Автор: Игорь Гончаренко (DL2KQ)

Смотрите другие статьи раздела Антенны УКВ.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Впервые преоодолена передача ВИЧ от матери к ребенку 02.01.2026

Проблема вертикальной передачи ВИЧ - от матери к ребенку - остается одной из ключевых задач глобальной медицины. Недавний отчет Всемирной организации здравоохранения (ВОЗ) демонстрирует историческое достижение: Бразилия впервые в своей истории полностью преодолела этот путь передачи вируса. Страна стала 19-й в мире и первой с населением более 100 миллионов человек, которая достигла такого результата. Достижения Бразилии основаны на комплексных медицинских программах, обеспечивающих своевременный доступ к диагностике и терапии для всех слоев населения. ВОЗ официально подтвердило, что уровень передачи ВИЧ от матери к ребенку снизился до менее двух процентов. Более 95% беременных женщин в стране получают регулярный скрининг на ВИЧ и необходимое лечение в рамках стандартного ведения беременности. Изначально программа тестировалась в крупных муниципалитетах и штатах с населением более 100 тысяч человек, а затем была масштабирована на всю страну. Такой подход позволил унифицировать ста ...>>

Нанослой германия увеличивает эффективность солнечных батарей на треть 02.01.2026

Разработка высокоэффективных солнечных батарей остается одной из ключевых задач современной энергетики. Недавнее исследование южнокорейских ученых позволило повысить производительность тонкопленочных солнечных элементов почти на 30%, что открывает новые перспективы для возобновляемых источников энергии, гибкой электроники и сенсорных устройств. Команда исследователей сосредоточилась на элементах на основе моносульфида олова (SnS) - нетоксичного и доступного материала, который идеально подходит для гибких солнечных панелей. До настоящего времени эффективность SnS-устройств оставалась низкой из-за проблем на границе контакта с металлическим электродом. В этой области возникали структурные дефекты, диффузия элементов и электрические потери, что существенно ограничивало возможности таких батарей. "Этот интерфейс был главным барьером для достижения высокой производительности", - отмечает профессор Джейонг Хо из Национального университета Чоннам. Для решения этих проблем ученые предлож ...>>

Электростатическое решение для борьбы с льдом и инеем 01.01.2026

Борьба с льдом и инеем на транспортных средствах и критически важных поверхностях зимой остается сложной и затратной задачей. Ученые из Virginia Tech разработали инновационную технологию, способную разрушать лед и иней без использования тепла или химических реагентов, что открывает новые возможности для безопасной и экологичной зимней эксплуатации транспорта. Исследователи обнаружили, что лед и иней образуют кристаллическую решетку с так называемыми ионными дефектами - заряженными участками, способными перемещаться под воздействием электрического поля. Эти дефекты являются ключом к управлению прочностью льда и его удалением с поверхностей. Когда на замерзшую поверхность подается положительный электрический заряд, отрицательные ионные дефекты притягиваются к источнику поля. Это вызывает разрушение кристаллической решетки льда, в результате чего часть льда буквально "отскакивает" от поверхности. Такой эффект позволяет удалять лед без применения внешнего тепла или химических средств ...>>

Случайная новость из Архива

Новый способ получения электричества с помощью воды 01.05.2014

Ученые из Корейского института электронной технологии и Сеульского национального университета придумали новый способ получения энергии.

Исследователи создали необычный элемент для унитаза, который позволяет преобразовывать в электричество энергетический потенциал смываемой воды. Электричество, полученное таким способом, может применяться для различных бытовых нужд. Исследование показало, что движения одной капли воды достаточно для того, чтобы светился один зеленый светодиод.

Конструктивно созданный учеными элемент представляет собой емкостные активные преобразователи. Состоящие из нескольких слоев, они обернуты вокруг прозрачных структурированных электродов.

Эксперименты доказали, что они могут вырабатывать электричество прямо в текущей воде. Это показывает, что естественное движение воды можно использовать довольно широко, и не только для бытовых нужд, но и в производстве.

Ученые считают, что их технология даст возможность использовать движение воды в больших объемах, к примеру морские волны или дождь, для получения электрической энергии.

Другие интересные новости:

▪ За пристрастие к кофе отвечают гены

▪ Ионный мини-двигатель протестирован на орбите

▪ LM46002 - 60V DC-DC регулятор с малым током потребления от TI

▪ Птицы избегают радиоактивности

▪ Состояние кишечной микрофлоры резко ухудшается в реанимации

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Часы, таймеры, реле, коммутаторы нагрузки. Подборка статей

▪ статья Мартин Лютер Кинг. Знаменитые афоризмы

▪ статья Кто такие аборигены? Подробный ответ

▪ статья Наполнитель и приемщик баллонов. Типовая инструкция по охране труда

▪ статья Радиопередатчик УКВ диапазона. Энциклопедия радиоэлектроники и электротехники

▪ статья Тахометр. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025