Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Транзисторный УМЗЧ. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Усилители мощности транзисторные

Комментарии к статье Комментарии к статье

Обычно, рассматривая работу УМЗЧ, предполагают, что его нагрузка чисто активная. Однако громкоговоритель, да еще со сглаживающими фильтрами, представляет собой сложную комплексную нагрузку. При работе на комплексную нагрузку возникающий сдвиг фазы между напряжением и током на выходе усилителя приводит к тому, что при синусоидальных входных сигналах нагрузочная прямая превращается в эллипс. Положения рабочей точки (нагрузочная кривая) для реактивной нагрузки на выходных характеристиках триода и транзистора при усилении гармонического сигнала показаны на рис. 1 и 2 соответственно.

Транзисторный УМЗЧ, рис. 1

Транзисторный УМЗЧ, рис. 2

Как видно из рис. 1, выходные характеристики триода практически идеальны для комплексной нагрузки, какой является АС. Благоприятный спектр гармоник (не выше пятой) и высокая линейность в значительной степени определяют "мягкость" звучания ламповых усилителей. В то же время, однотактный транзисторный усилитель совершенно непригоден для работы на громкоговоритель, т.к. линия нагрузки заходит с одной стороны в область ограничения по допустимой мощности рассеяния на коллекторе (заштрихованная область, выше гиперболы), с другой - в нелинейные области при малых Uкэ.

Поперечный размер эллипса нагрузочной кривой зависит от индуктивной составляющей нагрузки, а продольный - от активной. При усилении импульсных сигналов, например типа "меандр", линия нагрузки представляет собой параллелограмм [1], что еще больше усугубляет положение. Амплитуда скачка напряжения в момент переключения (за счет ЭДС самоиндукции) зависит от отношения постоянной времени сигнала То к постоянной времени нагрузки T=L/R. При т>То с целью исключения вероятности пробоя выходных транзисторов (например в усилителях класса D с ШИМ) параллельно выходным транзисторам устанавливают обратновключенные диоды.

На рис. 3 показаны нагрузочные характеристики двухтактного выходного каскада транзисторного УМЗЧ на семействе выходных вольт-амперных характеристик при чисто активной нагрузке (прямая) и при комплексной нагрузке (эллипс) в границах области безопасной работы (ОБР) транзисторов по постоянному току.

Транзисторный УМЗЧ, рис. 3

При этом максимальная мощность рассеяния на каждый транзистор плеча выходного каскада увеличивается пропорционально сдвигу фазы <р вектора нагрузки (рис. 4). Типовое значение сдвига фазы обычно лежит в пределах 25...60°, но в редких случаях достигает 80°.

Транзисторный УМЗЧ, рис. 4

Поскольку импеданс акустической системы (АС) носит индуктивный характер, вектор которой Z1=RL+ZL имеет направление, противоположное направлению вектора емкостной нагрузки (рис. 4), можно подобрать RC-цепочку (компенсатор Буше) с импедансом Z2=R+Zc, компенсирующую индуктивную составляющую нагрузки. В результате импеданс АС становится чисто активным и не зависит от частоты.

Условия компенсации [1]:

Транзисторный УМЗЧ. Условия компенсации

где RL - эквивалент активного сопротивления громкоговорителя (4...10 Ом); С = 0,1 мкФ.

Импульсный характер реального звукового сигнала и комплексный характер импеданса громкоговорителей приводят к тому, что пиковое значение выходного тока в 5...8 раз превышает максимальное амплитудное значение Im, соответствующее работе на активную нагрузку.

Так, например, при выходной мощности 60 Вт и сопротивлении нагрузки 4 Ом пиковое значение тока на выходе может иметь значение 5,5 А при активной нагрузке и 33 А при комплексной. Отсюда видно, насколько важно правильно подобрать компенсирующую RC-цепочку и иметь достаточный запас по мощности УМЗЧ.

На рис. 5 представлена диаграмма работы оконечных транзисторов в режиме АВ, где Uo1, Uo2 - их начальное смещение; lo1, lo2 - ток покоя.

Транзисторный УМЗЧ, рис. 5

При абсолютной симметрии каскада суммарная характеристика представляет собой прямую линию, в противном случае имеет место изгиб в ту или другую сторону [З].

Звучание ламповой аппаратуры часто характеризуют такими эпитетами как "бархатное", "мягкое", "теплое", естественное и т.п. Чем это вызвано? В первую очередь тем, что у ламп уровень искажений при увеличении сигнала возрастает медленно, достигая величин нескольких процентов. Такую зависимость называют "монотонным искажением". Причем гармоники выше третьей практически отсутствуют. Не зря на смену усилителям класса Hi-Fi (High Fidelity - "высокая верность") приходят преимущественно ламповые усилители класса Hi End (High End - "высокий итог", "наивысший") с коэффициентом нелинейных искажений до 1%.

В транзисторных усилителях искажения низки только в рабочей области и резко возрастают при переходе ее границ. Характерной особенностью подавляющего большинства транзисторных усилителей является четкое ограничение выходного сигнала при перегрузке по напряжению в результате насыщения транзисторов предвыходного каскада (усилителя с ОЭ или с ОБ и его нагрузки - генератора тока, рис. 6). Это ограничение не всегда симметрично, что приводит к резкому возрастанию высших гармонических составляющих (до 10% и более) и жесткому, "металлическому" звучанию. Как известно, "меандр" содержит около 30% нечетных гармоник. При этом полезная информация на вершинах сигнала на время перегрузки полностью заменяется продуктами искажений в чистом виде. В этом смысле вполне оправдано раздельное, двух-или трехполосное усиление сигналов. Так как уровень ВЧ-составляющих на 10...15 дБ ниже, их компрессирования и полного пропадания не будет.

Транзисторный УМЗЧ, рис. 6

Для уменьшения искажений подобного рода непосредственно на входе обычного УМЗЧ устанавливают амплитудный ограничитель (Limiter).

В многополосном УМЗЧ лимитер устанавливают не на общем входе, а только на входе усилителя НЧ. Кроме того, для усилителей с нестабилизированным источником питания необходимо учитывать возможное снижение напряжения сети.

Возможный вариант улучшения звучания одноканального усилителя с использованием ограничителя и отдельных активных регуляторов тембра показан на структурной схеме (рис. 7). В этом варианте при наладке лимитера оставляют запас по перегрузочной способности усилителя для СЧ- и ВЧ-составляющих.

Транзисторный УМЗЧ, рис. 7

Амплитудная модуляция частот вблизи 50, 100 и 200 Гц на максимальной мощности УМЗЧ, питающегося от нестабилизированного источника, также вносит дополнительные искажения, придающие "басам" жесткость. Устранить этот вид искажений можно питанием УМЗЧ от стабилизированного источника напряжения с током нагрузки в импульсе не менее 20 А или увеличением глубины ООС на несколько порядков в области нижних частот с помощью интегратора [2].

Дополнительные призвуки вносит и самовозбуждение УМЗЧ во время переходных процессов и при работе на комплексную нагрузку.

Публикация: cxem.net

Смотрите другие статьи раздела Усилители мощности транзисторные.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Почтовый космический корабль Arc 03.10.2025

Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение. Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом. Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>

Лазерное обогащение урана 02.10.2025

Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана. Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций. GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>

Случайная новость из Архива

Новые ноутбуки 24.02.2011

С релизом новых 32-нанометровых процессоров Intel Sandy Bridge, а также платформы AMD Fusion ноутбуки в 2011 году станут еще производительнее, при этом будут выделять меньше тепла и дольше функционировать от одного заряда аккумулятора.

Кроме того, стоит ожидать более активного использования SSD, эти накопители пока не смогут заменить жесткие диски, но в топовых лэптопах станут появляться чаще. Также стоит отметить общую тенденцию к выпуску моделей с 11,6-дюймовым дисплеем, подобные устройства в работе удобнее нетбуков, но по габаритам и массе ушли от них совсем недалеко.

В прошлом году производители только экспериментировали с добавлением 3D в считанные модели, в этом же их количество увеличится. В основном это будут мультимедийные ноутбуки с диагональю экрана 15-18", но не за горами появление устройств и меньших размеров.

Другие интересные новости:

▪ Черная дыра родила планету

▪ Joshua от VIA

▪ Нейроны движения разделили по ролям

▪ Безопасная транспортировка марсианского грунта

▪ Экологический и медицинский вред от крабовых палочек

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Параметры радиодеталей. Подборка статей

▪ статья Я не умру, а буду жить, потому что я посеял семя словесное. Крылатое выражение

▪ статья Как на самом деле звучала ленинская фраза про кухарку и государство? Подробный ответ

▪ статья Арония черноплодная. Легенды, выращивание, способы применения

▪ статья Генератор на PIC16F84A и AD9850. Энциклопедия радиоэлектроники и электротехники

▪ статья Испытание инвертного сахара цветными реакциями. Химический опыт

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025