Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Принцип работы солнечных элементов. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Альтернативные источники энергии

Комментарии к статье Комментарии к статье

Хотя многие из нас этого не подозревают, способ получения электроэнергии из солнечного света известен более 100 лет. Явление фотоэлектричества впервые наблюдал Эдмон Беккерель в 1839 г. В одном из своих многочисленных опытов с электричеством он поместил две металлические пластины в проводящий раствор и осветил установку солнечным светом. К своему величайшему изумлению, он обнаружил, что при этом вырабатывается электродвижущая сила (ЭДС).

Это случайное открытие оставалось незамеченным вплоть до 1873 г., когда Уиллоуби Смит обнаружил подобный эффект при облучении светом селеновой пластины. И хотя его первые опыты были несовершенны, они знаменовали собой начало истории полупроводниковых солнечных элементов.

В поисках новых источников энергии в лаборатории Белла был изобретен кремниевый солнечный элемент, который стал предшественником современных фотоэлектрических преобразователей.

Лишь в начале 50-х гг. солнечный элемент достиг относительно высокой степени совершенства.

Основы теории полупроводников

Основным полупроводниковым материалом в современной электронике является кремний. Большинство современных солнечных элементов также изготавливается из кремния.

Полупроводник - это вещество, которое нельзя назвать ни хорошим проводником, ни хорошим изолятором. Например, медь - прекрасный проводник, область ее применения очень широка. Везде, где требуется передать электрическую энергию из одного места в другое, медь - незаменимый помощник. То же можно сказать и об алюминии.

С другой стороны, стекло имеет ничтожную электропроводность, но является хорошим диэлектриком. Если вам понадобится преградить путь электрическому току, эту задачу с успехом решит стеклянный изолятор. Кстати, изоляторы полюсных наконечников в первых телефонах изготовлялись из стекла.

Принцип работы солнечных элементов
Рис.1

Электропроводность полупроводников заключена между этими двумя предельными случаями. В некоторых случаях применения полупроводники могут служить как проводники, в ряде других - как изоляторы. Однако чистый кремний все-таки ближе к изоляторам и очень плохо проводит электрический ток. Причина этого объясняется особенностью его кристаллической структуры.

Атомы кремния связаны между собой с помощью так называемых валентных электронов. Лучше всего представить эти связи в виде "рук". Каждый атом кремния имеет четыре "руки".

Атомы кремния весьма "общительны", они не любят одиночества. Поэтому стараются держаться "за руки" с окружающими их атомами.

Поскольку каждый атом имеет четыре "руки", которыми он берется за "руки" соседей, все вместе они образуют решетку, показанную на рис. 1. В результате все четыре "руки" атома оказываются занятыми. Следовательно, в такой структуре нет свободных электронов ("рук"), А без свободных электронов вряд ли возможен электрический ток.

Для нужд электроники такое положение дел неприемлемо. Чтобы протекал ток, в составе кристалла необходимо иметь свободные электроны. Это достигается введением примесей в исходное вещество. Подобный процесс называется легированием.

Легирование полупроводника

Предположим, что мы взяли и заменили в нашей кристаллической структуре один атом кремния на атом, имеющий валентность, равную пяти (другими словами, имеющий пять "рук". Например, таким атомом является атом бора . Оказавшись среди своих "новых соседей" и взявшись с ними "за руки", этот атом вскоре обнаружит, что одна "рука" у него свободна. (Автор ошибается - в качестве донора (источника свободных электронов) используются атомы фосфора, имеющие валентность, равную пяти, а в качестве акцепторов, позволяющих ввести в кристалл кремния положительные заряды (дырки), применяются атомы бора, для которых характерна валентность, равная трем. - Прим. ред.)

Принцип работы солнечных элементов
Рис.2

Эта ни с кем не связанная "рука" есть не что иное, как свободный электрон. Так как атом бора более или менее удовлетворен тем, что четыре из пяти "его рук" - электронов заняты, его не особенно беспокоит судьба пятой. При малейшем возмущении электрон "оторвется".

Такова суть легирования. Чем больше примесей мы введем в кристалл, тем больше в нем будет свободных электронов и тем лучше кремний будет проводить электрический ток.

При легировании может происходить и обратный процесс. Если атом кремния заменить трехвалентным атомом, например фосфором, в нашей структуре появится так называемая дырка. Следовательно, в кристалле наблюдается недостаток электроне" и он с готовностью примет их в свою решетку.

Вследствие того, что в такой структуре атомы пытаются захватить электроны, образующиеся дырки будут перемещаться по структуре, испытывающей недостаток электронов. На самом же деле электроны движутся от дырки к дырке и, таким образом, проводят электрический ток.

Изготовление солнечного элемента

Теперь можно подумать, что если взять легированный кристалл кремния с недостатком электронов и легированный кристалл с избытком электронов и соединить их вместе, то что-то должно произойти.

Принцип работы солнечных элементов
Рис.3

При тесном механическом контакте двух кристаллов атомы в приповерхностных областях сближаются настолько, что атомы фосфора легко отдают свои лишние электроны, а атомы бора о готовностью их принимают.

В результате восстанавливается электрическое равновесие кристалла. Но вспомните, что кристаллы имеют очень жесткую структуру, поэтому обмен произойдет только между атомами, находящимися в самом тесном контакте друг с другом. Толщина области этого контакта не превышает размеров нескольких атомов, а объем полупроводника остается без изменений.

Конечно, чтобы получить такой эффект, требуется несколько большее, чем простое соединение двух кусков кремния вместе. Чаще всего кремний легируют, используя процесс высокотемпературной диффузии. В результате на границе между областями в глубине полупроводника, легированными разными примесями, образуется сверхтонкая область раздела, называемая p-n-переходом.

Именно внутри этой области происходит преобразование света в электричество.

Когда частица света, называемая фотоном, с достаточной энергией ударяется в p-n-переход, она выбивает электрон, делая его свободным, т. е. способным к перемещению. Энергия фотона при этом передается электрону. При этом в решетке кристалла образуется дырка. Необходимо иметь в виду, что область перехода стремится сохранить равновесие. Этот процесс, называемый фотоионизацией, происходит не только в области p-n-перехода, но и в любой другой части кристалла, в которую проникает солнечный свет, имеющий достаточно большую энергию, необходимую для создания свободных носителей заряда - электрона и дырки.

Вследствие того что в материале n-типа существует недостаток дырок, а в материале p-типа - недостаток электронов, дырка и электрон разделяются и мигрируют в разных направлениях.

Но теперь равновесие нарушено. Электрон, получивший энергию фотона, стремится вновь соединиться со своим антиподом (дыркой) и готов потратить на это свою энергию. К сожалению, p-n-переход представляет собой потенциальный барьер, который электрон не может преодолеть.

Однако если мы соединим области с проводим остями p- и n-типов между собой проводником, то это препятствие будет успешно преодолено и электрон "проберется" к своей дырке через "черный ход". При этом электрон расходует по пути свою энергию, которую мы используем.

Характеристики солнечного элемента

p-n-Переход представляет собой внушительную преграду для движения электронов. Но ее нельзя назвать непреодолимой. Энергии, которую электрон получает от фотона, обычно недостаточно, чтобы он мог преодолеть этот барьер и соединиться с дыркой, но так бывает не всегда.

Принцип работы солнечных элементов
Рис.4: 1 - верхняя токосъемная решетка; 2 - диффузионный слой n-типа; 3 - n-p-переход, 4 базовый слой p типа; 5 - нижний контакт.

Высота потенциального барьера p-n-перехода составляет около 600 мВ (0,6 В). Электроны с энергией более 600 мВ могут "подняться" на эту стену и поглотиться. Следовательно, максимальное напряжение, которое может развить солнечный элемент, составляет 600 мВ. Однако фактическое значение зависит от типа полупроводникового материала и конструкции солнечного элемента.

Принцип работы солнечных элементов
Рис.5

Подключение нагрузки к солнечному элементу снижает энергию некоторых электронов, включая и более энергичные среди них. В результате снижается суммарное напряжение солнечного элемента и число электронов, способных преодолеть барьер p-n-перехода.

При увеличении сопротивления нагрузки через нее будет "откачиваться" все большее число электронов, а напряжение еще больше уменьшится. Однако в некоторый момент происходит странная вещь. При напряжении 450 мВ (0,45 В) ток (поток электронов) перестает расти даже несмотря на то, что напряжение продолжает уменьшаться. Достигается "плато" тока.

Это явление связано с конечным числом фотонов, падающих на p-n-переход . Известно, что, чем больше фотонов достигают p-n-перехода, тем больше высвобождается электронов. Больше фотонов - больше ток.

Однако наступает момент, когда используется буквально каждый попавший в p-n-переход фотон и число свободных электронов, а следовательно, и ток больше не увеличиваются. Это соответствует появлению "плато" на характеристике солнечного элемента.

Конечно, число свободных электронов зависит еще от площади поверхности и интенсивности света. Очевидно, что с увеличением площади элемента захватывается больше фотонов и увеличивается ток. Подобным образом с увеличением интенсивности света возрастает концентрация фотонов при данной площади, что также увеличивает силу тока.

Коэффициент полезного действия солнечного элемента

Обычно среднюю интенсивность солнечного света, достигающего поверхности земли, принимают равной 100 мВт/см2. Иными словами, солнечный элемент размером 10x10 см2 теоретически должен генерировать 10 Вт мощности.

К сожалению, ни один солнечный элемент не может и даже не будет генерировать такой мощности: всегда будут иметь место потери. Наибольшая эффективность (коэффициент полезного действия), достигнутая до сих пор (да и то с каскадными фотоэлементами в экспериментальной лаборатории), составляет около 30%. К. п. д. обычного кремниевого солнечного элемента колеблется в пределах 10-13%. Элемент площадью 100 см2 может генерировать около 1 Вт мощности.

Конечно, к. п. д. солнечного элемента зависит от многих факторов, среди которых наиболее значительным является изменение температуры окружающей среды. С увеличением температуры решетка кристалла возбуждается и ее атомы колеблются более интенсивно. Это в свою очередь приводит к повышению энергетического уровня электронов внутри структуры. Со временем, когда энергетический уровень электронов повышается настолько, что большая их часть способна преодолеть потенциальный барьер p-n-перехода, в полупроводнике резко возрастает рекомбинация. Это приводит к уменьшению числа электронов, достигающих сеточных коллекторов, и электрический ток в нагрузке уменьшается. С другой стороны, низкая температура способствует фактическому усилению фотоэффекта.

Основной причиной уменьшения к. п. д. солнечных элементов с увеличением температуры является снижение величины потенциального барьера p-n-перехода, что приводит к падению напряжения, генерируемого элементом.

Автор: Байерс Т.

Смотрите другие статьи раздела Альтернативные источники энергии.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Токсичность интернета преувеличена 07.01.2026

Социальные сети нередко воспринимаются как арена постоянной агрессии, оскорблений и распространения фейковой информации. Новое исследование Стэнфордского университета показывает, что реальность значительно отличается от популярного представления: интернет гораздо менее токсичен, чем многие пользователи считают. Ученые опросили более тысячи американцев, попросив их оценить долю пользователей соцсетей, которые ведут себя агрессивно или распространяют ненависть. Оказалось, что впечатления людей сильно преувеличивают масштабы проблемы. Например, респонденты считали, что почти половина пользователей Reddit хотя бы раз оставляла оскорбительные комментарии, тогда как фактические данные платформы показывают, что таких людей не более 3%. Аналогичная ситуация наблюдается с дезинформацией. Опрос показал, что большинство участников считали почти половину аудитории Facebook распространителями фейковых новостей, однако статистика говорит об обратном: фактическая доля таких пользователей состав ...>>

Процессоры Ryzen AI 400 07.01.2026

Современные вычисления все больше ориентируются на интеграцию искусственного интеллекта и высокую производительность в компактных устройствах, таких как ноутбуки и мини-ПК. Новая линейка процессоров AMD Ryzen AI 400 демонстрирует, как разработчики объединяют мощные центральные ядра, графику и нейросетевые ускорители в одном чипе, чтобы удовлетворять растущие потребности пользователей в играх, контенте и ИИ-приложениях. AMD представила процессоры серии Gorgon Point, которые включают до 12 ядер Zen 5 и до 24 потоков вычислений. Чипы поддерживают интегрированную графику RDNA 3.5, обеспечивают максимальную тактовую частоту до 5,2 ГГц и имеют энергопотребление от 15 Вт до 54 Вт. Особое внимание уделено NPU, способному обрабатывать до 60 триллионов операций в секунду (TOPS), что делает эти процессоры эффективными для задач с искусственным интеллектом. Конструкция Ryzen AI 400 сочетает ядра Zen 5 и Zen 5c, обеспечивая высокую гибкость и производительность. Несмотря на то, что архитектур ...>>

Женщины лучше распознают признаки болезни по лицу 06.01.2026

Способность распознавать, что кто-то нездоров, часто проявляется интуитивно: бледная кожа, опущенные веки, уставшее выражение лица могут сигнализировать о недомогании. Новое исследование международной группы ученых показало, что женщины в среднем точнее мужчин улавливают такие тонкие невербальные признаки болезни, что может иметь эволюционные и социальные объяснения. В отличие от предыдущих работ, где использовались отредактированные фотографии или имитация больных лиц, ученые решили проверить, насколько люди способны распознавать естественные признаки недомогания. Такой подход позволил оценить реальную чувствительность к изменениям в лицах, возникающим при болезни. В исследовании приняли участие 280 студентов, поровну мужчин и женщин. Участникам предложили оценить 24 фотографии, на которых изображены люди как в здоровом состоянии, так и во время болезни. Это дало возможность сравнить восприятие естественных признаков недомогания в реальных лицах. Для анализа состояния каждого ...>>

Случайная новость из Архива

Надзор за работниками с помощью ИИ 10.10.2025

Современные технологии все глубже проникают в сферу труда, постепенно изменяя не только методы производства, но и саму природу рабочих отношений. В Китае этот процесс приобрел особенно заметный масштаб: искусственный интеллект становится инструментом не просто автоматизации, но и наблюдения за поведением сотрудников. Новые системы контроля превращают рабочие места в пространства постоянного цифрового надзора, где эффективность и дисциплина измеряются алгоритмами в реальном времени.

На фабриках и в офисах по всей стране все активнее внедряются системы, использующие камеры и интеллектуальные программы анализа движений. Эти алгоритмы фиксируют активность работников, оценивают их скорость, внимание и взаимодействие с коллегами. Полученные данные мгновенно преобразуются в отчеты, по которым руководители могут судить о производительности труда и принимать решения о вмешательстве в процесс. Сторонники таких технологий считают, что подобная автоматизация повышает эффективность производства, снижает издержки и устраняет человеческий фактор в управлении персоналом.

Искусственный интеллект позволяет собирать огромные объемы информации - от продолжительности выполнения задач до степени вовлеченности в командную работу. С точки зрения работодателей, это обеспечивает "прозрачность" производственного процесса и облегчает контроль над коллективом. Однако вместе с экономическими преимуществами возрастает и риск превращения рабочего пространства в систему тотального наблюдения, где любое действие фиксируется и анализируется машиной.

Особенность китайской технологической среды заключается в том, что развитие подобных решений во многом определяется инициативой бизнеса, а не регуляторов. Как отмечают эксперты, государственный контроль и участие самих работников в принятии решений остаются минимальными. Новые продукты и сервисы часто выводятся на рынок сразу после появления технологической возможности, без долгих обсуждений этических последствий. Это позволяет компаниям быстро внедрять инновации, но делает баланс между производительностью и правом на личное пространство все более хрупким.

Со временем ИИ-инструменты стали не только средством повышения эффективности, но и фактором, стирающим границы между работой и личной жизнью. Многие компании отслеживают не только действия сотрудников на рабочем месте, но и их онлайн-активность, местоположение, время отклика на сообщения. Система уведомлений побуждает работников быть на связи даже вне офиса, а то, что ранее считалось исключительными ситуациями, постепенно превращается в норму.

Исследователи отмечают, что подобная практика усиливает зависимость сотрудников от цифрового контроля и делает сбор личных данных избыточным. В условиях, когда в Китае доминирует утилитарный подход к конфиденциальности, работодатель получает доступ к информации, не всегда необходимой для выполнения трудовых обязанностей. Это приводит к психологическому выгоранию, снижению удовлетворенности трудом и размыванию представлений о границах личного времени.

По данным аналитического центра Chatham House, бизнес-модели, основанные на алгоритмах искусственного интеллекта, способствуют росту неравенства в распределении выгод. Несмотря на рост производительности, значительная часть работников не ощущает улучшений в оплате и условиях труда. Исследователи отмечают, что цифровые инструменты управления доводят сотрудников до предела возможностей, но выгода от этого перераспределяется в пользу компаний.

Следует подчеркнуть, что подобные методы мониторинга не ограничиваются Китаем. Крупные западные корпорации, включая Amazon, также активно экспериментируют с системами цифрового отслеживания активности работников. Это указывает на глобальную тенденцию, в рамках которой технологии наблюдения становятся неотъемлемой частью современной экономики.

Другие интересные новости:

▪ Сверхбыстрый интернет от Google

▪ Катастрофы от глобального потепления не будет

▪ Гаджет Xiaomi Bluetooth Key Finder

▪ Ткань, охлаждающая в жару

▪ Быстрее ветра

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Компьютерные устройства. Подборка статей

▪ статья Порядок в танковых частях! Крылатое выражение

▪ статья Какая страна, не имеющая гор, славится титулованным горнолыжником? Подробный ответ

▪ статья Капуцин большой. Легенды, выращивание, способы применения

▪ статья Политура. Простые рецепты и советы

▪ статья Виды модуляции при дальней связи на УКВ. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026