Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Типы ветроэнергетических установок. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Альтернативные источники энергии

Комментарии к статье Комментарии к статье

Известно много различных ветроэнергетических установок (ВЭС), но все их можно разделить на два типа: с горизонтальной и вертикальной осью вращения. Первые имеют сложную конструкцию, зато обладают более высоким коэффициентом использования энергии ветра, поэтому чаще применяются в промышленности. Вторые - более просты в конструкции, но менее продуктивны. На рынке они встречаются редко и применяются обычно в частных домах.

Горизонтальные (крыльчатые) ветроколеса

Широкое распространение получили ветроустановки с крыльчатыми ветроколесами и горизонтальной осью вращения (рис.1). Среди них наибольшее развитие получили двух- и трехлопастные ветроколеса.

Горизонтальные (крыльчатые; ВЭС - лопастные механизмы с горизонтальной осью вращения. Скорость вращения и простота изготовления обусловили широкое применение крыльчатых ветрогенераторов в промышленности. Чтобы обеспечить максимальную скорость вращения, лопасти крыльчатого ветряного генератора должны располагаться вертикально - перпендикулярно потоку воздухе. Для достижения этого применяется специальное устройство - стабилизатор. Горизонтальные ВЭС могут непосредственно соединяться с генератором без мультипликаторов. У крыльчатых вегрегенераторов намного выше коэффициент использования энергии ветра. В то же время скорость вращения у них обратно пропорциональна количеству крыльев. Другими словами чем меньше лопастей - тем выше скорость вращения. Поэтому установки с количеством лопастей больше трех практически не используются.

Вращающий момент ветроколеса в них создается подъемной силой, образующейся при обтекании профиля лопастей воздушным потоком. В результате кинетическая энергия воздушного потока в пределах площади, ометаемой лопастями, преобразуется в механическую энергию вращения ветроколеса.

Мощность, развиваемая на оси ветроколеса, пропорциональна квадрату его диаметра и кубу скорости ветра. По классической теории Н. Е.Жуковского, для идеального ветроколеса коэффициент использования энергии ветра ξ=0,593. То есть идеальное ветроколесо (с бесконечным числом лопастей) может извлечь 59,3% энергии, проходящей через его поперечное сечение. Реально на практике у лучших быстроходных колес максимальное значение коэффициента использования энергии ветра доходит до 0,45-0,48, а у тихоходных - до 0,36-0,38. Важной характеристикой ветроколеса является его быстроходность, представляющая собой отношение скорости движения конца лопасти к скорости ветрового потока. Конец лопасти обычно движется в плоскости ветроколеса со скоростью, которая в несколько раз выше скорости ветра. Оптимальные значения быстроходности двухлопастного колеса - 5-7, трехлопастного - 4-5, шестилопастного - 2,5-3,5.

Из конструктивных характеристик на мощность ветроколеса основное влияние оказывают его диаметр, а также форма и профиль лопастей. Мощность мало зависит от числа лопастей.

Частота вращения ветроколеса пропорциональна быстроходности и скорости вефа и обратно пропорциональна диаметру. На величину мощности влияет также высота расположения центра колеса, так как скорость ветра зависит от высоты. Мощность ВЭУ, как отмечалось, пропорциональна скорости ветра в третьей степени. При расчетной скорости ветра и выше обеспечивается работа ВЭУ с номинальной мощностью. При скоростях ветра ниже расчетной мощность ветроустановки может составлять 20-30% от номинальной и менее. При таких режимах работы происходят большие потери энергии в генераторах вследствие их низких КПД на малых нагрузках, а в асинхронных генераторах возникают, кроме того, большие реактивные токи, которые необходимо компенсировать. Для исключения этого недостатка в некоторых ВЭУ применяют генераторы с номинальными мощностями 100 и 20-30% от номинальной мощности ВЭУ.

При слабых ветрах первым генерагора отключается В некоторых ВЭУ малый генератор обеспечивает также возможность работы установки при малых скоростях ветра при пониженных оборотах с высоким значением коэффициента использования энергии ветра Установка ветроколеса "на ветер", т. е. перпендикулярно к направлению ветра, производится в агрегатах очень малой мощности с помощью хвоста (хвостового оперения), в агрегатах небольшой и средней мощности - посредством механизма виндроз, а в современных крупных установках - специальной системой ориентирования, получающей управляющий импульс отдатчика направления ветра (флюгера), установленного наверху на гондоле ветроустановки.

Механизм виндроз представляет собой одно или два небольших ветроколеса, плоскость вращения которых перпендикулярна к плоскости вращения основного колеса, работающих на привод червяка, поворачивающего платформу головки ветродвигателя до тех пор. пока виндрозы не будут лежать в плоскости, параллельной направлению ветра. Крыльчатое ветроколесо с горизонтальной осью вращения может располагаться перед башней и за ней. В последнем случае лопасть подвергается постоянному многократному воздействию переменных сил при прохождении в тени башни, что одновременно значительно повышает уровень шума. Для регулирования мощности и ограничения частоты вращения ветроколеса применяется ряд способов, в том числе поворот лопастей или их части вокруг своей продольной оси, а также закрылки, клапаны на лопастях и другие способы.

Основными преимуществами ветроустановок с горизонтальной осью вращения ветроколеса является то, что условия обтекания лопастей воздушным потоком постоянны, не изменяются при повороте ветроколеса, а определяются только скоростью ветра. Благодаря этому, а также достаточно высокому значению коэффициента использования энергии ветра. ВЭУ крыльчатого типа в настоящее время получили наибольшее распространение.

Вертикальные (роторные) ветроколеса

Другой разновидностью ветроколеса является ротор Савониуса (рис. 2). Вращающий момент возникает при обтекании ротора потоком воздуха за счет разного сопротивления выпуклой и вогнутой частей ротора. Колесо отличается простотой, но имеет очень низкий коэффициент использования энергии ветра - всего 0,10-0,15. В последние годы в ряде зарубежных стран, особенно в Канаде, начали заниматься разработкой ветродвигателя с ротором Дарье, предложенным во Франции в 1920 г. Этот ротор имеет вертикальную ось вращения и состоит из двух-чегырех изогнутых лопастей. Лопасти образуют пространственную конструкцию, которая вращается пол действием подъемных сил. возникающих на лопастях от ветрового потока. В роторе Дарье коэффициент использования энергии ветра достигает значений 0,30-0,35 В последнее время проводятся разработки роторного двигателя Дарье с прямыми лопастями.

Главным преимуществом ветроустановок Дарье является то, что они не нуждаются в механизме ориентации на ветер. У них генератор и другие механизмы размещаются на незначительной высоте возле основания. Все это существенно упрощает конструкцию. Однако серьезным органическим недостатком этих ветродвигателей является значительное изменение условий обтекания крыла потоком за один оборот ротора, циклично повторяющееся при работе. Это может вызывать усталостные явления и приводить к разрушению элементов ротора и серьезным авариям, что должно учитываться при конструировании ротора (особенно при больших мощностях ВЭУ). Кроме того, для начала работы их требуется раскрутить.

Вертикальные (карусельные, роторные) ВЭС - лопастные механизмы с вертикальной осью вращения. Работают при низких скоростях ветра, но имеют малую эффективность. Поэтому встречаются они достаточно редко и применяются, как правило, в домашних системах. В то же время, в отличие от горизонтальных, могут работать при любом направлении ветра, не изменяя своего положения. Установка сама следит "откуда ветер дует", следовательно, ей не нужны никакие дополнительные устройства. Карусельные ветроустановки тихоходны, что позволяет применять в них простые электросхемы для съема энергии, в частности, асинхронные генераторы. В то же время тихоходность ограничивает применение вертикальных ВЭС, так как вынуждает применять повышающие редукторы - мультипликаторы, имеющие очень низкий КПД. Без мультипликатора такую установку эксплуатировать проблемно.

Типы ветроэнергетических установок
Рис.2. Ротор Савониуса: а) двухлопастный, б) четырехлопастный

Зависимости коэффициента использования энергии ветра ξ, от быстроходности Z для различных типов ветроколес приведены на рис.3. Видно, что наибольшее значение Е, имеют двух- и трехлопастные колеса с горизонтальной осью вращения. Для них высокое ξ сохраняется в широком диапазоне быстроходности Z. Последнее существенно, так как ветроустановкам приходится работать при скоростях ветра, изменяющихся в больших пределах. Именно поэтому установки этого типа получили в последние годы наибольшее распространение.

Типы ветроэнергетических установок
Рис.3. Типовые зависимости коэффициента использования энергии ветра ξ, от быстроходности ветроколеса Z: 1 - идеальное крыльчатое ветроколесо; 2, 3 и 4 - двух-, трех- и многолопастные крыльчатые ветроколеса; 5 - ротор Дарье; 6 - ротор Савониуса; 7 - четырехлопастное ветроколесо датской мельницы.

Смотрите другие статьи раздела Альтернативные источники энергии.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Почтовый космический корабль Arc 03.10.2025

Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение. Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом. Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>

Лазерное обогащение урана 02.10.2025

Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана. Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций. GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>

Случайная новость из Архива

Портативный аккумулятор Asus ZenPower Max 10.09.2016

Компания Asus представила новый портативный аккумулятор Asus ZenPower Max, который при габаритах 222,5 х 42 х 42 мм и массе 570 г имеет внушительную емкость 26800 мАч. Инженеры расположили в этом вытянутом корпусе восемь ячеек емкостью по 3350 мАч.

Стоит добавить, что это самый емкий портативный аккумулятор данного производителя, который только в прошлом году году выпустил модель ZenPower на 9600 мАч, а в этом году пополнил линейку моделями ZenPower Pro и ZenPower Combo, емкость которых составляет 10050 мАч, а также ZenPower Ultra с емкостью 20100 мАч.

Asus ZenPower Max позволяет одновременно заряжать смартфоны, планшеты, ноутбуки и прочую электронику, кроме того, устройство поддерживает технологию быстрой зарядки Quick Charge 2.0 для смартфонов. В оснащение входят два полноразмерных порта USB и разъем USB-C.

Светодиодный фонарик, которым оснащен Asus ZenPower Max, может непрерывно работать в течение 12 дней.

Asus ZenPower Max предлагается по цене около 158 долларов.

Другие интересные новости:

▪ Строится самый крупный радиотелескоп в мире

▪ Модуль связи 5G для автомобилей

▪ Открыта единичная электронная связь

▪ Город притягивает ураганы

▪ Микрочипы 3D TLC NAND 32 Гбайт

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Электрик в доме. Подборка статей

▪ статья Если бы молодость знала, если бы старость могла. Крылатое выражение

▪ статья Как по расположению глаз можно отличить хищника от травоядного? Подробный ответ

▪ статья Интервьюер. Должностная инструкция

▪ статья SE усилитель на лампах 6Ж52П и 6П43П. Энциклопедия радиоэлектроники и электротехники

▪ статья Блок питания для Ethernet коммутатора D-Link DES-1005D. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025