Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Геотермальная энергетика. Техника извлечения геотермальных вод. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Альтернативные источники энергии

Комментарии к статье Комментарии к статье

Геотермальную энергию получают от источников тепла с высокими температурами, она обладает некоторыми особенностями. Одна из них заключается в том, что температура теплоносителя существенно ниже температуры при сжигании топлива. Несмотря на то что суммарные запасы геотермальной энергии велики, ее термодинамическое качество низко. Эти источники имеют много общего с промышленными выбросами тепла и тепловой энергией океана. Ниже кратко рассмотрена стратегия использования геотермальной энергии.

Сочетание возможностей и потребностей

С геотермальными источниками всегда связывают попытки выработки электроэнергии как наиболее ценного продукта, в то время как наилучший способ утилизации тепловой энергии - использование комбинированного режима (выработка электроэнергии и обогрев). Безусловно, электроэнергия может быть подана в энергосистему и через нее передана потребителям наряду с электроэнергией, вырабатываемой другими источниками. В то же время не лишне упомянуть, что потребность в тепле при температуре до 100°C обычно даже выше, чем в электроэнергии. Таким образом, использование геотермальной энергии в виде тепла не менее важно. Выработка электроэнергии, по всей вероятности, будет представлять интерес, если теплоноситель имеет температуру более 300°C, и не будет, если последняя ниже 150°C.

Тепло не так легко передавать на расстояние более 30 км, поэтому необходимо его использовать вблизи места добычи. В зонах холодного климата обогрев жилищ и промышленных зданий создает ощутимую потребность в тепле, если плотность населения составляет более 300 человек на 1 км2 (более 100 усадьб на 1 км2). Таким образом, тепловая станция мощностью 100 МВт может обслуживать жилой район площадью примерно 20х20 км при расходе тепла около 2 кВт на усадьбу. Подобная геотермальная система давно используется в Исландии и в меньшей степени - в Новой Зеландии. Другие крупные потребители тепла - теплицы (до 60 МВт/км в одной установке для Северной Европы), фермы для разведения рыб, установки для сушки пищевых продуктов и для реализации других технологий.

Масштаб использования геотермальной энергии определяют некоторые факторы. Доминантой стоимости оказываются капитальные затраты на сооружение скважин, стоимость которых экспоненциально увеличивается с ростом их глубины. Так как температура увеличивается с глубиной, а выработка энергии увеличивается с ростом температуры, в большинстве случаев ограничиваются оптимальной глубиной скважины примерно 5 км. Как следствие масштаб энергетических установок обычно выбирают больше 100 МВт (электрических или тепловых - для высоких температур, только тепловых - для низких температур).

Общее количество тепла, извлекаемого из геотермальной скважины, можно увеличить за счет повторной закачки отработанной и частично охлажденной воды. Это удобный способ избавиться от сбросовых вод, которые могут быть сильно минерализованными (содержать до 25 кг/м3 солей) и являются опасными загрязнителями среды. Однако это приводит к росту стоимости станций.

Техника извлечения тепла

Наиболее успешно реализованные проекты имеют скважины, пробуренные непосредственно в естественные подземные коллекторы геотермальных районов (рис. 1). Этот метод используется в Гейзерах (Калифорния) и в Уайракее (Новая Зеландия), где в скважинах существует значительное давление. Подобные методы используются для извлечения энергии из водоносных слоев в высокотермальных районах, где природного напора достаточно, чтобы обойтись без насосных систем.

Последние разработки направлены на извлечение тепла из сухих горных пород, так как они могут обеспечить большую производительность, чем водные источники. Лидирующая группа специалистов (Лос-Аламосская научная лаборатория, США) разработала методы дробления скал гидроразрывом с помощью холодной воды, нагнетаемой под давлением в скважину (рис. 1). После предварительного дробления пород вода нагнетается через питающую скважину, фильтруется через скальные породы на глубине около 5 км при температуре 250°C, теплая вода возвращается на поверхность через приемную скважину. Две такие скважины могут обеспечить энергией установку мощностью порядка гигаватта.

Геотермальная энергетика. Техника извлечения геотермальных вод
Рис.6.1. Схема размещения гидротермальных станций в гипертермальном районе (геотермальное поле Гейзеры, Калифорния): 1 - естественный гейзер; 2 - энергетическая станция; 3 - глубокая скважина (5 км); 4 - пароводяной источник ( ~280°C); 5 - мантия; 6 - горячие скальные породы

Системы генерации электроэнергии и тепловой энергии. Выбор теплообменников и турбин для обычных геотермальных источников - комплексная задача, требующая специального опыта. Несколько вариантов возможных схем ГеоТЭС приведено на рис. 6.2.

Если для получения электроэнергии используются источники с низкой температурой, то для приведения в действие турбин приходится вместо воды применять другие рабочие жидкости (например, фреон, толуол). Новые виды техники нуждаются в повышении эффективности. Особые трудности могут возникнуть с теплообменниками из-за высокой концентрации в воде из скважин различных химических веществ. Капитальные затраты на строительство ГеоТЭС в настоящее время варьируется от 1500 до 2500долл. на киловатт установленной электрической мощности, что оказывается сравнимым с таковыми для АЭС и ТЭС.

Главными потребителями геотермальных ресурсов на ближайшую и отдаленную перспективу, несомненно, будут теплоснабжение и, в значительно меньшей мере, выработка электроэнергии. Приоритетность теплоснабжения в балансе использования геотермальной электроэнергии.

Геотермальная энергетика. Техника извлечения геотермальных вод
Рис.6.2. Примеры организации цикла для производства электроэнергии. Цикл с одним рабочим телом, например, с водой или фреоном (а); цикл с двумя рабочими телами - водой и фреоном (б); прямой паровой цикл (и) и двухконтурный цикл (г); I - геотермальный источник; II - турбинный цикл; III - охлаждающая вода

Геотермальная технология добычи тепловой энергии недр - это совокупность способов, средств и процессов извлечения, обработки и доставки теплоносителя с заданным качеством и рыночным уровнем экономической эффективности его использования. Использование низкотемпературной геотермальной энергии малых глубин можно рассматривать как некоторый технико-экономический феномен или реальную революцию в системе теплообеспечения. Меньше, чем за 10 лет в США была разработана многовариантная технология и построены сотни тысяч действующих систем теплоснабжения. Ежегодно вводится в строй не менее 50-80 тысяч новых систем. Успешно внедряется эта технология и в других странах мира: Швеции, Швейцарии, Канаде, Австрии, Германии, России. В 2002 году в мире действовало около 450 тысяч таких систем с общей мощностью 2.9 ГВт (т), при средней -10 кВт (т).

Приповерхностные (малоглубинные) геотермальные системы используются для обогрева и охлаждения различных типов жилых домов (от индивидуальных до многоквартирных), бензозаправок, супермаркетов, церквей, образовательных учреждений и т.д.

Суть рассматриваемых технологий, представленных приповерхностными системами (горно-энергетическими установками) с теплообменом в скважинах и каналах, заключается в создании подземного теплообменника, с замкнутым или открытым контуром, располагаемого на малой глубине (50 - 300 м) и присоединенного к тепловому насосу, установленному внутри отапливаемого помещения (рис. 6.3). При этом, на территории Центральной России могут использоваться температуры пород в интервале от 7 до 15°C.

Эти системы извлекают не только геотермальную энергию, накопленную в горных породах или в воде, но и солнечную. Конкретная доля той или иной энергии, используемая установкой, зависит от глубины расположения теплообменника, климатических и гидрогеологических условий района.

В России есть положительный опыт строительства и эксплуатации таких геотермальных установок. В частности в Ярославской области построена и второй год работает система теплоснабжения большой сельской школы, проектируются и строятся еще три установки подобного типа.

Геотермальная энергетика. Техника извлечения геотермальных вод
а)

Геотермальная энергетика. Техника извлечения геотермальных вод
б)
Рис.6.3. Приповерхностная (малоглубинная) геотермальная система с теплообменом: а - горизонтальных каналах; б - в скважинах

Оценка геотермальных технологий, применяемых в мировой практике показывает, что с их помощью может быть обеспечен широкий спектр потребителей тепловой энергии: от городского микрорайона до индивидуального дома. На основе геотермальных циркуляционных систем (ГЦС), состоящих из дублета глубоких (до 1,5 - 2,5 км) скважин, применяя тепловые насосы и пиковый догрев, получают высокотемпературные режимы отопления (90°C и выше) с тепловой мощностью до нескольких десятков МВт. Технология грунтовых тепловых насосов на скважинах 50 - 150 м соответствует среднетемпературным и низкотемпературным режимам, для коммерческих (магазины, офисы и др.) и муниципальных (школы, больницы и др.) приложений и объектов ЖКХ, при мощности до 0,1-0,4 МВт.

На рис. 6.4 приведены схемы теплоснаюжения геотермальной водой.

Геотермальная энергетика. Техника извлечения геотермальных вод
Рис.6.4. Технологии теплоснабжения с извлечением геотермальной энергии (нажмите для увеличения): а) на базе ГЦС; б) на базе глубинного теплообменника; в) грунтовые тепловые насосы

Основным критерием для оценки энергосберегающего, экономического и экологического эффектов геотермальных установок с электрическим тепловым насосом, является коэффициент использования первичных энергоносителей (КИПЭ), который определяется произведением к.п.д. производства электроэнергии (КПДэ = 0,30 - 0,35) на средний, в течение срока службы установки, коэффициент преобразования теплового насоса (КПТН). Диапазон КПТН, который может быть достигнут с использованием геотермальных источников, от грунта - до пластовых рассолов, при температурах от 5 - 7°C до 35 - 40°C, от 3 до 7 единиц и выше. Таким образом, в зависимости от типа источника, могут быть получены уровни КИПЭ от 1,1 до 2,5 единиц, что в 1,2 - 7,0 раз выше показателей для традиционных котельных (рис. 6.5).

Эффективность геотермальной установки с электрическим ТН настолько выше, в сравнении с традиционной котельной, насколько больше отношение их КИПЭ. Отсюда, экономия потребляемых энергоносителей и снижение вредных выбросов: 20 - 70%.

Рост цен на привозное топливо и транспортные расходы сегодня предопределили ускоренное развитие геотермальной энергетики на Камчатке, Курильских островах и в северных районах России.

На рис. 6.5 приведены коэффициенты использования первичных энергоносителей в традиционных и геотермальных котельных.

Геотермальная энергетика. Техника извлечения геотермальных вод
Рис.6.5. Коэффициент использования первичных энергоносителей (КИПЭ) традиционными (т) и геотермальными (г) котельными

Россия имеет многолетний опыт исследования геотермальных полей, проведения буровых работ на них и эксплуатации ГеоЭС. Паужетская ГеоЭС (юг Камчатки) уже более 30 лет обеспечивает самой дешевой электроэнергией поселок Озерная, где сосредоточено основное производство красной икры. Россия еще в 1967 г. была первой страной в мире, создавшей ГеоЭС с бинарным циклом на низкопотенциальном тепле ( горячая вода - 95°C) на Паратунском геотермальном поле на Камчатке.

Автор: Магомедов А.М.

Смотрите другие статьи раздела Альтернативные источники энергии.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Особенности почек помогают легче переносить высоту 18.01.2025

Высокогорные регионы всегда привлекали внимание исследователей, изучающих, как человек адаптируется к жизни в условиях разреженного воздуха. Недавнее исследование группы ученых из Университета Маунт-Ройал в Канаде, возглавляемое доктором Тревором Деем, проливает свет на важную роль почек в акклиматизации к большим высотам. Работы канадских ученых объясняют, почему представители народности шерпа, которые веками живут в высокогорных районах Тибета, значительно лучше переносят высокогорье. В своем исследовании ученые наблюдали за дыханием и составом крови участников во время их подъема на высоту 4300 метров в Гималаях, в Непале. Эксперимент проводился с участием двух групп: одна состояла из жителей низменностей, не привыкших к горной среде, а другая - из шерпов, чей организм приспособлен к жизни на большой высоте. Основное различие между этими группами было в том, как их организмы реагировали на дефицит кислорода в воздухе. У шерпов наблюдалась более быстрая и масштабная адаптация к ...>>

Производство электричества с помощью термоядерного синтеза 18.01.2025

Американская компания Commonwealth Fusion Systems (CFS) нацелена на создание первой в мире термоядерной электростанции, способной подключаться к электрической сети. Этот амбициозный проект, известный как ARC (Affordable, Robust, Compact), будет построен вблизи города Ричмонд, штат Вирджиния. В соответствии с планами, новая электростанция сможет производить до 400 мегаватт чистой энергии, что вполне хватит для обеспечения электричеством 150 тысяч домохозяйств. Прогнозируется, что станция начнет работу в 2030-х годах. Принцип работы термоядерной электростанции основан на процессе термоядерного синтеза, который происходит в ядре звезд. В отличие от традиционной атомной энергетики, где используется деление ядер атомов с образованием радиоактивных отходов, термоядерный синтез создает в качестве побочного продукта безопасный гелий. Для того чтобы удерживать плазму с температурой свыше 100 миллионов градусов Цельсия, установка будет использовать мощные магнитные поля. Тем не менее, н ...>>

Экологическая защита для овощей и фруктов 17.01.2025

Исследователи из женского колледжа Шри Нараяна в Колламе, Керала, Индия, разработали инновационный способ продления свежести фруктов и овощей. Группа под руководством Пурнимы Виджаян предложила использовать съедобное покрытие, созданное на основе целлюлозных нановолокон (CNF), полученных из луковой шелухи. Этот подход не только продлевает срок хранения продуктов, но и способствует их безопасности благодаря включению нанокуркумина, известного своими антимикробными свойствами. Основным компонентом покрытия являются CNF, полученные из переработанных отходов лука. Эти нановолокна соединяются с синтетическим биополимером, который улучшает структуру покрытия, устраняя проблемы с водостойкостью и термической стабильностью, ранее свойственные материалам на основе CNF. Кроме того, добавление нанокуркумина усиливает антимикробные свойства покрытия, делая его особенно эффективным для предотвращения порчи. Для проверки эффективности этой разработки ученые провели эксперимент с апельсинами. П ...>>

Случайная новость из Архива

Серебряные нанонити сохранят тепло 09.01.2015

Если мы чувствуем, что нам холодно, - значит, тело теряет тепло быстрее, чем его может произвести наш организм. Поэтому ночью мы укрываемся одеялом, а зимой, чтобы не замерзнуть, надеваем теплую одежду. С точки зрения физики шерстяной свитер или пуховик не могут греть - они лишь теплоизолируют тело от внешней среды. В результате тепло, вырабатываемое организмом, нагревает самого человека, а не окружающую среду.

Подсчитано, что в среднем тело человека производит 187 Вт тепла, из которых примерно 24 Вт уходит за счет конвекции, а остальные 163 Вт приходятся на тепловое излучение. Разницу между конвекцией и излучением легко понять на таком примере: когда мы дышим теплым воздухом на замерзшие руки, происходит конвекционный перенос тепла, а если те же самые руки протягиваем поближе к горящему камину, то в этом случае их греет инфракрасное излучение. Обычная одежда хорошо предотвращает конвекцию, но от потерь через излучение защищает слабо. А это значит, что даже в самой теплой куртке мы все равно будем остывать, стоя на морозе.

Такой порядок вещей не устроил исследователей из Стэнфорда, которые, вооружившись знаниями физики и нанотехнологиями, взялись создать самую теплую одежду. Основная задача состояла в том, чтобы сделать материал, который мог бы эффективно отражать инфракрасные лучи, излучаемые человеческим телом. Обычная алюминиевая фольга отлично справилась бы с такой задачей - она эффективно отражает тепловое излучение. Но материал, кроме того, чтобы сохранять тепло, должен быть проницаем для влаги - одежде необходимо "дышать". Физически он должен задерживать инфракрасное излучение, но в тоже время пропускать молекулы водяного пара.

Для этих целей на обычную ткань был нанесен слой из серебряных нанонитей. Нити образуют сетчатую структуру с размером пор порядка 200-300 нм, что примерно в 250 раз меньше диаметра человеческого волоса. Длина волн теплового излучения человека составляет приблизительно 9 мкм, поэтому такие лучи полностью отражаются от наносетки. В то же время, диаметра пор достаточно, чтобы через них свободно проходили молекулы воды - их размер около 0,2 нм. Еще одна замечательная особенность подобного материала - его проводимость для электричества. Если по одежде с покрытием из серебряных нанонитей пустить ток - то она будет нагреваться. Для этого вовсе не нужно подключать свитер к розетке и делать из него подобие электрического стула, достаточно использовать напряжение меньше одного вольта - абсолютно безопасное для организма.

Естественный вопрос, сколько серебра пойдет на изготовление подобного материала и насколько такое покрытие будет крепким? Для изготовления одного квадратного метра хлопковой ткани с серебряным нанопокрытием потребуется около 0,1 грамма серебра, что не переводит полученную одежду в категорию драгоценностей. Создатели материала испытали устойчивость своей разработки. Оказалось, что ткань с серебряными нанонитями не утрачивает своих свойств после нескольких циклов стирки. Кроме того, серебро имеет антибактериальное действие, что продлевает срок службы ткани.

Другие интересные новости:

▪ Доказано существование правила энтропии для квантовой запутанности

▪ Ремонт труб под землей

▪ Береза против холестерина

▪ Paralenz - экшн-камера для аквалангистов

▪ Аккумуляторы из двойного углерода

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Прошивки. Подборка статей

▪ статья Менандр. Знаменитые афоризмы

▪ статья Какой признак Чебурашки сильно увеличился в процессе работы над мультфильмом? Подробный ответ

▪ статья Охранник. Должностная инструкция

▪ статья Казеиновые лаки на растворимом стекле. Простые рецепты и советы

▪ статья Транзисторы IRFP9140 - IRFPS37N 50A. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025