Бесплатная техническая библиотека
Солнечная энергия. Потенциал, оценка ресурса, барьеры. Энциклопедия радиоэлектроники и электротехники

Энциклопедия радиоэлектроники и электротехники / Альтернативные источники энергии
Комментарии к статье
Солнечный потенциал
Годовое поступление солнечной энергии варьируется от 900-1000 кВт·ч/м2 на севере региона Балтийского моря до, к примеру, 1077 кВт·ч/м2 на территории Центральной Европы (Богемия) и до 1600 кВт·ч/м2 в Средиземноморском и Черноморском регионах на горизонтальной поверхности. На юге на наклонной поверхности показатель годового поступления солнечной энергии выше на 20%.
Оценка ресурса
Доступная солнечная энергия изменяется в течение дня из-за относительного движения Солнца и в зависимости от облачности. В полдень при ясной погоде энергетическая освещенность, создаваемая Солнцем, может достигать 1000 Вт/м2, тогда как в условиях плотной облачности она может упасть до 100 Вт/м2 и ниже, даже в полдень. Количество солнечной энергии меняется вместе с углом наклона установки и ориентацией ее поверхности, снижаясь по мере удаления от южного направления.
Фотоэлементы заводского производства в продаже имеют определенную номинальную мощность, выраженную в ваттах пиковой мощности (Втп). Это показатель их максимальной мощности в стандартных условиях испытаний, когда солнечная радиация близка к своему максимальному значению в 1000 Вт/м2, а температура поверхности фотоэлемента 25°C. На практике же фотоэлементам редко приходится работать в таких условиях. Приблизительно мощность (P) фотоэлектрической системы оценивается по формуле:
P (кВт·ч/день) = Pp (кВт) * I (кВт·ч/м2 в день) * P, где:
Pp - номинальная мощность в кВт, эквивалентная КПД, умноженному на площадь в м2, I - экспозиция солнечного излучения на поверхности, в кВт·ч/м2 в день PR - коэффициент производительности системы.
Среднесуточное значение солнечной освещенности (I) в Европе в кВт·ч/м2 в день (наклон к югу, угол наклона к горизонту 30 градусов) приводится в таблице.
| |
Южная Европа |
Центральная Европа |
Северная Европа |
| Январь |
2,6 |
1,7 |
0,8 |
| Февраль |
3,9 |
3,2 |
1,5 |
| Март |
4,6 |
3,6 |
2,6 |
| Апрель |
5,9 |
4,7 |
3,4 |
| Май |
6,3 |
5,3 |
4,2 |
| Июнь |
6,9 |
5,9 |
5,0 |
| Июль |
7,5 |
6,0 |
4,4 |
| Август |
6,6 |
5,3 |
4,0 |
| Сентябрь |
5,5 |
4,4 |
3,3 |
| Октябрь |
4,5 |
3,3 |
2,1 |
| Ноябрь |
3,0 |
2,1 |
1,2 |
| Декабрь |
2,7 |
1,7 |
0,8 |
| За год |
5,0 |
3,9 |
2,8 |
Типичные коэффициенты производительности:
- 0,8 для систем, соединенных с сетью;
- 0,5 - 0,7 для гибридных систем;
- 0,2 - 0,3 для автономных систем, используемых круглый год.
В условиях Европы поступающая солнечная энергия в большинстве случаев превосходит энергопотребление здания. К примеру, типичный многоквартирный жилой дом в Чехии получает 1077 кВт·ч/м2, тогда как каждый его этаж потребляет примерно 150 кВт·ч/м2 для отопления и еще 25-50 кВт·ч/м2 для освещения и приготовления пищи, что в целом равняется 875 - 1000 кВт·ч/м2 для пятиэтажного дома (этажи измерены в м2 горизонтальной поверхности). Поступающей в течение года солнечной энергии в целом достаточно, но полезный ресурс ограничен колебаниями солнечной энергии и емкостью аккумулирования. Корректную оценку доли полезного солнечного тепла можно сделать с учетом разных тепловых нагрузок.
Ограничения встроенных систем обычно состоят в том, что солнечное отопление может покрыть лишь 60-80% потребности в горячей воде и 25-50% отопления. Зависит это от местоположения дома и от типа системы. В Северной Европе ограничения составляют соответственно 70% и 30% для горячего водоснабжения и отопления помещений.
Анализ и опыт применения солнечных систем центрального отопления показывают, что они могут покрывать 5% потребления без аккумулирования, 10% с 12-часовым хранением, и около 80% -- с сезонным. Эти данные основаны на системах районного отопления жилого сектора, где средние теплопотери составляют 20%. Солнечные системы отопления без аккумулирования тепла, являются, безусловно, самым дешевым решением.
Солнечное отопление может обеспечивать около 30% потребности промышленных предприятий, которые используют тепло ниже 100 оС, если потребление тепла на них является стабильным. В зависимости от времени года и температуры, солнечная энергия может обеспечить 100% потребности на сушку продукции.
Солнечный нагрев плавательных бассейнов может почти полностью обеспечить тепловую нагрузку закрытых и 100% для открытых бассейнов в летний период.
Таким образом, подсчет потенциала солнечного отопления - это, главным образом, вопрос оценки потребности в низкотемпературном тепле.
Барьеры
В большинстве своем установки солнечного нагрева хорошо разработаны, и если встречаются трудности на пути их освоения, то они вызваны скорее отсутствием определенных материалов или технологий в данном месте, чем отсутствием технологий как таковых. Следовательно, основными барьерами, помимо экономических, являются:
- недостаток информации о существующих технологиях, их оптимальных решениях и интеграции в отопительные системы;
- нехватка квалифицированных кадров для производства и установки.
Иногда препятствием является нехватка солнечной энергии. Что касается активных систем солнечного отопления, практически всегда можно найти такое место для установки коллектора, откуда можно взять энергию солнечного света. В случае пассивной солнечной энергии, которая, как правило, проникает сквозь обычные окна, соседство с домами или деревьями может привести к серьезному сокращению поступающей энергии.
Даже после резкого снижения цены, фотоэлементы в настоящее время стоят 5 долларов США за 1 Втп. Электроэнергия от фотоэлементов стоит сегодня 0,5 - 1 доллар/кВт·ч, то есть дороже, чем от других возобновляемых источников. В будущем, по мере более широкого их применения, стоимость фотоэлементов должна уменьшиться. Несмотря на свою высокую стоимость, фотоэлектрическая энергия может оказаться дешевле других источников в отдаленных регионах, отрезанных от электросетей, или там, где производство электроэнергии другими способами (например, на дизель-генераторах) затруднено либо недопустимо по экологическим причинам (например, в горных местностях).
Смотрите другие статьи раздела Альтернативные источники энергии.
Читайте и пишите полезные комментарии к этой статье.
<< Назад
Последние новости науки и техники, новинки электроники:
Оптимальная продолжительность сна
12.11.2025
Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам.
Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта.
Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>
Дефицит кислорода усиливает выброс закиси азота
12.11.2025
Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски.
Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота.
В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>
Омега-3 помогают молодым кораллам выживать
11.11.2025
Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов.
В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам.
Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>
Случайная новость из Архива Роль дофамина в мозге влюбленных
23.01.2024
Свежие научные исследования, проведенные на примере степных полевок, поясняют воздействие дофамина, гормона удовольствия, на формирование и поддержание чувства любви. Ученые выявили, что уровень дофамина в мозге существенно повышается в периоды тоски по партнеру, но этот химический след исчезает после окончания отношений.
Зои Дональдсон, старший автор исследования и доцент кафедры поведенческой нейробиологии в Калифорнийском университете в Боулдере, утверждает, что их открытия способствуют глубокому пониманию внутренних процессов человеческого мозга при формировании близких отношений и их разрыве.
С использованием современных технологий нейровизуализации ученые измеряли активность дофамина в близлежащем ядре мозга степных полевок в реальном времени. Эксперимент включал различные сценарии, в том числе пересечение препятствий для встречи с партнером, и результаты оказались впечатляющими.
Энн Пирс, первый автор исследования, отмечает, что при каждом приближении полевки к своему партнеру реакция мозга, отражаемая уровнем дофамина, сравнима с "рейвом". Светящаяся палочка, символизирующая уровень дофамина, мигала интенсивно в моменты близости и взаимодействия.
Эксперименты также включали периодические разлуки пар полевок на несколько недель. Воссоединение после этих периодов сопровождалось снижением характерного всплеска дофамина, что свидетельствует об изменении "химического отпечатка" в мозге, связанного с желанием.
Полученные результаты могут стать ключом к пониманию психологии межличностных отношений у человека. Ученые надеются, что их работа поможет разработке новых методов лечения для людей, сталкивающихся с психическими заболеваниями, затрагивающими социальную сферу жизни.
|
Другие интересные новости:
▪ Счетчик взглядов на рекламные плакаты
▪ Искусственный фотосинтез для получения топлива
▪ Умеренный шум тоже вреден
▪ LCD телевизоры дешевеют благодаря Sony и Samsung
▪ Гиперзвуковой биплан
Лента новостей науки и техники, новинок электроники
Интересные материалы Бесплатной технической библиотеки:
▪ раздел сайта Большая энциклопедия для детей и взрослых. Подборка статей
▪ статья О заметности искажений. Искусство аудио
▪ статья Откуда взялись алмазы? Подробный ответ
▪ статья Пользователь (оператор) компьютера (ПЭВМ). Типовая инструкция по охране труда
▪ статья Устройство автоматической подсветки с номером дома. Энциклопедия радиоэлектроники и электротехники
▪ статья Универсальное зарядное устройство LiIon, NiCd, NiMH аккумуляторов на микросхеме MAX1501. Энциклопедия радиоэлектроники и электротехники
Оставьте свой комментарий к этой статье:
Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua
2000-2025