Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Прямое преобразование солнечной энергии в электричество. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Альтернативные источники энергии

Комментарии к статье Комментарии к статье

От недостатков, присущих машинным преобразователям, в известной степени свободны энергоустановки с так называемыми безмашинными преобразователями: термоэлектрическими, термоэмиссионными и фотоэлектрическими (солнечные батареи), непосредственно преобразующими энергию солнечного излучения в электрический ток.

Термоэлектрический метод

Термоэлектрогенераторы (ТЭГ) основаны на открытом в 1821 году немецким физиком Т.И. Зеебеком термоэлектрическом эффекте, состоящем в возникновении на концах двух разнородных проводников термо-ЭДС, если концы этих проводников находятся при разной температуре.

Открытый эффект первоначально использовался в термометрии для измерения температур. Энергетический КПД таких устройств-термопар, подразумевающий отношение электрической мощности, выделяемой на нагрузке, к подведенному теплу, составлял доли процента. Только после того, как академик А.Ф. Иоффе предложил использовать для изготовления термоэлементов вместо металлов полупроводники, стало возможным энергетическое использование термоэлектрического эффекта, и в 1940-1941 годах в Ленинградском физико-техническом институте был создан первый в мире полупроводниковый термоэлектрогенератор. В 40-50-е годы была разработана теория термоэлектрического эффекта в полупроводниках, а также синтезированы весьма эффективные (по сей день) термоэлектрические материалы. Согласно разработанной теории, выражение КПД ТЭГ дает формула:

, где

z - добротность полупроводникового материала, 1/К; ТГ - температура горячего спая термоэлемента, К; ТХ - температура холодного спая, К; ТСР - средняя температура ветви термоэлемента, К,

М - критерий Иоффе, a - приведенная дифференциальная термо-ЭДС ветвей термоэлементов, мкВ/К; s, l- приведенные электропроводность и теплопроводность ветвей термоэлементов соответственно в 1/(Ом м) и Вт/(м•К).

Имеет смысл остановиться на приведенной формуле для КПД, поскольку она характеризует эффективность не только термоэлектрогенераторов, но и других устройств прямого преобразования энергии. Обращает на себя внимание тот факт, что КПД ТЭГ зависит от тех же факторов, что КПД любой тепловой машины: термического КПД обратимого цикла Карно (первый множитель в формуле) и коэффициента необратимых потерь энергии (второй сомножитель). В ТЭГ внутренние необратимые потери связаны главным образом с перетоком тепла по положительной 3 и отрицательной 4 ветвям от горячих 1 (рис. 3,а) к холодным 5 спаям (спаи, выполняемые обычно из меди, отделяют от ветвей антидиффузионными слоями 2 (рис. 3,а)). Как следует из формулы, необратимые потери тем ниже, чем выше добротность используемых материалов. Однако теория и многолетняя практика показали, что величина добротности порядка 3 • 10-3 1/град является, видимо, ее предельным значением.

Прямое преобразование солнечной энергии в электричество
Рис.3. Схема термоэлектрического преобразователя: а - отдельный термоэлемент, б - термоэлектрический модуль на концентраторе

Соединяя между собой отдельные термоэлементы, можно создать достаточно мощные термобатареи, одна из которых показана на рис. 3,б. Батарея размещена в фокальной плоскости концентратора 3; ее горячие спаи 1 непосредственно обогреваются солнечной концентрированной радиацией, а отвод тепла от холодных спаев 2 осуществляется излучением. Есть энергетические характеристики космической энергоустановки, подобной показанной на рис. 3, б, но без концентратора. Ожидаемый удельный вес установки до 50 Вт/кг. Это значит, что электростанция мощностью 10 ГВт может весить до 200 тыс. т.

Снижение веса энергоустановки напрямую связано с повышением КПД преобразования солнечной энергии в электричество, чего, как видно из приводимой выше формулы, можно достичь двумя путями: увеличением термического КПД преобразователя (КПД цикла Карно) и сжижением необратимых потерь энергии во всех элементах энергоустановки. Первый путь в принципе возможен, так как концентрированное излучение позволяет получать очень высокие температуры. Однако при этом весьма возрастают требования к точности систем слежения за Солнцем, что для громадных по размерам концентрирующих систем вряд ли достижимо. Поэтому усилия исследователей неизменно направлялись на снижение необратимых потерь, в первую очередь на уменьшение перетока тепла горячих спаев на холодные теплопроводностью. Для решения этой задачи требовалось добиться увеличения добротности полупроводниковых материалов.

Однако, как уже говорилось, после многолетних попыток синтезировать полупроводниковые материалы с высокой добротностью стало ясно, что достигнутая величина (2,5-2,7) • 105 является предельной величиной. Тогда при продолжении поиска новых путей снижения перетока тепла и возникла идея разделить горячий и холодный спаи воздушным промежутком, как это имеет место в двухэлектродной лампе - диоде. Если в такой лампе разогревать один электрод - катод 1 (рис. 4) и при этом охлаждать другой электрод - анод 2, то во внешней электрической цепи возникает постоянный ток.

Прямое преобразование солнечной энергии в электричество
Рис.4. Принципиальная схема термоэмиссионного преобразователя

Термоэмиссионный преобразователь (ТЭП)

Открытое Эдисоном явление получило название термоэлектронной эмиссии. Подобно термоэлектричеству, оно долгое время применялось в технике слабых токов. Позднее ученые обратили внимание на возможности использования метода для преобразования тепла в электричество. И хотя природа у термоэлектричества и термоэлектронной эмиссии разная, но выражения для КПД у них одинаковые:

где hк - КПД обратимого цикла Карно; hнеобр. - коэффициент, учитывающий необратимые потери в термоэмиссионном (термоэлектрическом) преобразователе.

Главные составляющие необратимых потерь в ТЭП связаны с неизотермическим характером подвода и отвода тепла па катоде и аноде, перетоком тепла с катода на анод по элементам конструкции ТЭП, а также с омическими потерями в элементах последовательного соединения отдельных модулей.

Для достижения высоких КПД цикла Карно современные ТЭП создают на рабочие температуры катодов 1700 -1900 К, что при температурах охлаждаемых анодов порядка 700 К позволяет получать КПД порядка 10%. Таким образом, благодаря снижению необратимых потерь в самом преобразователе и при одновременном повышении температуры подвода тепла КПД ТЭП оказывается вдвое выше, чем у описанного выше ТЭГ, но при существенно более высоких температурах подвода тепла. Для получения таких температур поверхностей катодов на геосинхронной орбите точность ориентации на Солнце концентратора ТЭП должна находиться в пределах 6°- 8°, что при тепловых мощностях СКЭС в 10 - 20 ГВт и соответствующих площадях концентраторов может стать, как отмечалось выше, серьезной технической проблемой.

Вполне возможно, что отмеченные обстоятельства сыграли не последнюю роль в выборе фотоэлектрического метода преобразования солнечной энергии в бортовых системах электропитания первых и последующих поколений космических аппаратов.

Фотоэлектрический метод преобразования энергии

Солнечная батарея (рис. 5) основана на явлении внешнего фотоэффекта, проявляющегося на р-n -переходе в полупроводнике при освещении его светом. Создают р-n (или n-p) - переход введением в монокристаллический полупроводниковый материал-базу примеси с противоположным знаком проводимости. Например, в кремний вводят алюминий или литий. В результате при попадании на р-n -переход солнечного излучения происходит возбуждение электронов валентной зоны и образуется электрический ток во внешней цепи. КПД современных солнечных батарей достигает 13-15%.

Прямое преобразование солнечной энергии в электричество
Рис.5. Схема солнечной батареи: 1 -  солнечный элемент, 2 - защитное стекло, 3 - коммутационная шина, 4 - подложка

Наиболее перспективным для создания преобразователей СКЭС ультратонкие солнечные элементы, имеющие КПД порядка 15% при удельных характеристиках 1 кВт/м2 и 200 Вт/кг. При использовании в качестве преобразователя СКЭС мощностью 10 ГВт этих солнечных батарей их площадь составила бы 50км2 при весе 10 тыс.т.

Смотрите другие статьи раздела Альтернативные источники энергии.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 12.11.2025

Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам. Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта. Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>

Дефицит кислорода усиливает выброс закиси азота 12.11.2025

Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски. Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота. В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Случайная новость из Архива

Покрышки для планетоходов 21.11.2017

Национальное управление США по воздухоплаванию и исследованию космического пространства (NASA) разрабатывает так называемые сверхэластичные (Superelastic) покрышки для планетоходов следующего поколения.

Повреждение колес - одна из проблем, с которыми сейчас сталкиваются автоматические аппараты для исследования Марса. Дело в том, что планетоходам приходится пробираться между острыми камнями и валунами внеземного ландшафта. Так, весной этого года стало известно, что довольно сильные "увечья" получило одно из колес марсохода Curiosity.

Решить проблему в NASA предлагают за счет использования особых колес из материала с памятью формы. Структура созданных прототипов напоминает кольчугу. Таким колесам не страшны наезды на острые булыжники, а после деформации они принимают прежний вид.

Специалисты NASA экспериментируют с различными сплавами, в частности, с нитинолом (NiTi). Он обладает способностью восстанавливать прежнюю форму даже после значительных деформаций.

Непневматические покрышки нового типа могут найти широкое применение и на Земле. В качестве возможных областей их использования названы военная и сельскохозяйственная техника, тяжелые строительные машины, внедорожники и авиационная техника.

Другие интересные новости:

▪ Найдена связь между непереносимостью глютена и муковисцидозом

▪ Надувной ветряк

▪ Влияние сердца на чувства

▪ Крыша вместо бензобака

▪ Пластмасса с памятью

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Важнейшие научные открытия. Подборка статей

▪ статья Клин - с гарантией. Советы домашнему мастеру

▪ статья Какие размеры имеет статуя Свободы в Нью-Йорке? Подробный ответ

▪ статья Бамбук. Легенды, выращивание, способы применения

▪ статья КВ антенны Квадрат. Принципы работы. Энциклопедия радиоэлектроники и электротехники

▪ статья Миниатюрный блок питания, 220/5-12 вольт 100 миллиампер. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025