Бесплатная техническая библиотека
Активная передающая антенна. Энциклопедия радиоэлектроники и электротехники

Энциклопедия радиоэлектроники и электротехники / Антенны УКВ
Комментарии к статье
Проблема создания передающих антенн интересует многих радиолюбителей. Как известно, хорошо излучают полноразмерные антенны, т.е. такие антенны, размеры которых соизмеримы с длиной волны. Однако создать полноразмерную антенну часто оказывается трудно. Поэтому многие обращаются к укороченным антеннам.
При использовании таких антенн возникает парадоксальная ситуация, при которой низкое выходное сопротивление транзисторного каскада Rвых (например при Ек=12,6 В, Pвых=10 Вт, Rвых=8 Ом) трансформируется в высокое волновое сопротивление кабеля 50 или 75 Ом, а затем вновь понижается для согласования с низким сопротивлением укороченной антенны. Проще согласовать низкое выходное сопротивление (в нашем примере - 8 Ом) транзисторного каскада с низким сопротивлением укороченной рамочной антенны (при коэффициенте укорочения 0,45 Rизл=8 Ом). Для этого необходимо непосредственно объединить выходной каскад с укороченной антенной.
Принципиальная схема активной антенны СВ-диапазона приведена на рисунке.

Усилительный каскад работает в режиме класса "С" и может использоваться для усиления ЧМ- и CW-сигналов. Выходная мощность каскада - 10 Вт. Она достигается при входной мощности 0,1...1,0 Вт - в зависимости от типа используемого транзистора. Наиболее высокий коэффициент усиления обеспечивают транзисторы КТ965А, КТ966А, несколько меньший - КТ958А, КТ920В. Для согласования входного сопротивления с кабелем используется трансформатор, который выполнен на ферритовом кольце диаметром 10 мм с проницаемостью 400. Обмотка состоит из 10 витков двух скрученных проводов ПЭВ-2 диаметром 0,31 мм.
На выходе усилительного каскада включена укороченная рамочная антенна, имеющая размеры 1,3х1,3 м и выполненная из медной шины сечением 3х5 мм. Усилитель включается в разрыв середины одной из вертикальных сторон, обеспечивая работу антенны с вертикальной поляризацией. Для снижения собственной резонансной частоты в точки 3, 4 включена укорачивающая емкость С4, которая должна обладать достаточной электрической прочностью (например конденсатор с воздушным диэлектриком).
Проводники, соединяющие рамку с транзистором, должны иметь минимальную длину (1...2 см).
Для работы AM и SSB между точками А и В включается резистор 500...600 Ом, с помощью которого устанавливается ток покоя 50 мА. Следует отметить, что в этом случае температурная стабильность каскада будет невысокой, и использовать его можно только в помещении.
Транзистор должен быть снабжен радиатором, площадь которого не менее 500 см2. Дроссель Др1 - типа ДПМ-2,4.
Для питания активной антенны можно использовать отдельный провод, но особенно удобно питать ее по входному коаксиальному кабелю с помощью разделительных конденсаторов и дросселей. Допустимая плотность тока для центральной жилы кабеля составляет 3 А/мм2, что позволяет использовать любые кабели, за исключением самых тонких.
Активная антенна может быть закреплена в оконном проеме или на балконе.
Первоначальная настройка антенны может быть осуществлена с помощью ГСС, слабо связанного с антенной (например с помощью небольшой рамки), и индикатором напряженности поля. Затем устанавливается напряжение питания (50% от номинального) и подается напряжение возбуждения на транзистор. Изменением величины укорачивающей емкости добиваются резонанса, что проявляется в повышении коллекторного тока и увеличении показаний измерителя напряженности поля. После этого перемещением точки 2 на боковой стороне рамки добиваются дальнейшего увеличения показаний индикатора напряженности, периодически подстраивая С4. Затем напряжение питания доводится до номинального.
Настройку можно также проводить с помощью измерителя частотных характеристик, включив на выход ИЧХ вход активной антенны, а вход ИЧХ соединив с небольшой рамкой, слабо связанной с активной рамочной антенной. Желательно проверить КСВ входной цепи, который должен быть близок к 1.
Литература
- Анисимов М. (UA3POC), Анисимов М. (UA3PML). Способ питания укороченной рамочной антенны. - Радиолюбитель KB и УКВ, 1997, N12,c.30,31.
Автор: М.Анимиов (RU3PF, ex UA3POC); Публикация: Н. Большаков, rf.atnn.ru
Смотрите другие статьи раздела Антенны УКВ.
Читайте и пишите полезные комментарии к этой статье.
<< Назад
Последние новости науки и техники, новинки электроники:
Оптимальная продолжительность сна
12.11.2025
Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам.
Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта.
Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>
Дефицит кислорода усиливает выброс закиси азота
12.11.2025
Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски.
Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота.
В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>
Омега-3 помогают молодым кораллам выживать
11.11.2025
Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов.
В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам.
Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>
Случайная новость из Архива Направление, в котором падает антиматерия
17.11.2018
Из школьного курса физики нам известно, что молоток и легчайшее перышко, будучи помещенными в вакуум, упадут на поверхность в один и тот же момент. Это было наглядно продемонстрировано американскими астронавтами миссии Apollo 15, а теперь ученые европейской организации ядерных исследований CERN планируют внести в этот простой эксперимент экзотический элемент, они будут "бросать" частицы антиматерии в вакуумной камере и наблюдать за воздействием на них сил гравитации. И, вполне возможно, что антиматерия будет "падать вверх" в силу своей анти-природы.
В нашем мире у каждой элементарной частицы имеется соответствующая ей по всем параметрам, за исключением противоположного электрического заряда, пара. Если обычная частица и античастица сталкиваются в пространстве, они взаимно уничтожаются, превращаясь в чистую энергию. Естественно, что такое свойство антиматерии затрудняет ее получение, хранение и изучение. В 2010 году ученым CERN удалось поймать в магнитной ловушке и изучить антиматерию, хотя время хранения антиматерии составляло всего доли секунды. Но уже в следующем году время удержания антиматерии в ловушке было увеличено до 16 минут.
Существующие физические теории предсказывают, что силы гравитации должны воздействовать на антиматерию точно также, как и на нормальную материю. Но это предположение должно быть проверено на практике, ведь даже небольшие отклонения теории от практики способны внести огромные изменения в существующую Стандартную Модель физики элементарных частиц. В рамках таких "проверочных" экспериментов несколько лет назад группа ученых CERN изучила оптический спектр антиводорода и нашла, что этот спектр абсолютно идентичен спектру нормального водорода.
Еще одним фундаментальным вопросом является то, как реагирует антиматерия на силы гравитации. Согласно теории, частицы антиматерии должны падать в гравитационном поле точно так же, как и частицы обычной материи. Но существует один шанс из миллиона, что частицы антиматерии будут падать в обратном направлении. И это можно будет узнать, лишь высвободив антиматерию из "объятий" удерживающей ее электромагнитной ловушки.
Проблема антиматерии и гравитации будет изучаться в ходе двух экспериментов, в которых, сразу после получения частиц антиматерии, будут отключены удерживающие их магнитные ловушки. А чувствительные датчики будут регистрировать всплески энергии и их точное положение. По получаемым данным ученые вычислят траекторию движения частиц антиматерии и измерят величину эффектов воздействия на них сил гравитации.
Основным различием между двумя экспериментами является метод получения антиматерии и ее подготовка к броску в свободное падение. Первый из экспериментов, ALPHA-g, базируется на уже существующем оборудовании эксперимента ALPHA, которое позволяет ученым создавать антиматерии и удерживать ее в ловушке. Антипротоны получаются при помощи установки Antiproton Decelerator (AD) и объединяются с позитронами для создания нейтральных атомов антиводорода. Именно нейтральная природа атомов антиводорода и позволяет избежать влияния на него других сил и точно измерить влияние сил гравитации.
Второй эксперимент, GBAR, черпает антипротоны из замедлителя ELENA и комбинирует их с позитронами, полученными при помощи маленького линейного ускорителя. Антипротоны (ионы антиводорода) охлаждаются до 10 микрокельвинов и при помощи света лазера превращаются в нейтральные атомы. Полученные антиатомы попадают в подготовленную ловушку, где производится их дальнейшее изучение.
К сожалению, на проведение этих экспериментов требуется очень много времени. А ситуация усугубляется еще тем, что через несколько недель ускорители CERN будут снова закрыты на два года, в течение которых будет производиться их коренная модернизация, которая приведет к превращению нынешнего Большого Адронного Коллайдера в установку следующего поколения, в Большой Адронный Коллайдер с высокой яркостью (High-Luminosity Large Hadron Collider, HL-LHC). Но ученые экспериментов GBAR и ALPHA-g рассчитывают, что оставшегося времени им должно хватить для проведения экспериментальной части исследований, а обработать собранные при этом данные можно будет и немногим позже.
|
Другие интересные новости:
▪ Найдено межзвездное железо
▪ Система поддержки внимания
▪ Видео на поле боя
▪ Морской охотник
▪ Синхронизация бортового компьютера автомобиля с iPhone и часами Apple Watch
Лента новостей науки и техники, новинок электроники
Интересные материалы Бесплатной технической библиотеки:
▪ раздел сайта Заводские технологии на дому. Подборка статей
▪ статья Пути повышения эффективности трудовой деятельности человека. Основы безопасной жизнедеятельности
▪ статья Какая галактика расположена ближе всего к нам? Подробный ответ
▪ статья Мешочный узел. Советы туристу
▪ статья Модернизируем шестиструнную гитару. Энциклопедия радиоэлектроники и электротехники
▪ статья Замена карты мокрыми пальцами. Секрет фокуса
Оставьте свой комментарий к этой статье:
Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua
2000-2025