Данная книга — это дополненный вариант издания «Обработка сигналов. Первое знакомство» серии «Механотроника. Первое знакомство (с иллюстрациями)», опубликованного в 1987 году. В отличие от предыдущего, каждая глава нового издания дополнена разделами «Обобщение главы» и «Практические задания». А в конце книги появился раздел «Ответы и решения», благодаря которому изучение методов обработки сигналов, по сравнению с первым изданием, стало более эффективным.
Понимание того, как формировались первые структуры во Вселенной, требует взгляда в эпохи, в которых не существовало ни звезд, ни галактик, ни привычных нам источников света. Научные группы по всему миру пытаются восстановить картину тех времен при помощи слабейших радиосигналов, оставшихся от водорода, который наполнял космос вскоре после Большого взрыва. Новые результаты, полученные на радиотелескопе Murchison Widefield Array в Австралии, неожиданным образом меняют представление об этих ранних этапах.
Сразу после Большого взрыва, произошедшего около 13,8 миллиарда лет назад, пространство стремительно расширялось и остывало. Через несколько сотен тысяч лет образовался нейтральный водород, и началась так называемая эпоха тьмы, когда Вселенная была лишена источников излучения. Лишь значительно позже гравитация собрала газ в плотные области, где зародились первые звезды и ранние черные дыры, а их интенсивное излучение привело к реионизации водорода и окончательному появлению света.
...>>
Качество воздуха в закрытых помещениях давно стало важнейшим фактором здоровья, особенно в городах, где люди проводят подавляющую часть времени внутри зданий. В последние годы исследователи уделяют все больше внимания именно тем технологиям, которые способны задерживать или разрушать вредоносные частицы до того, как они попадут в дыхательные пути человека. Одним из таких новаторских направлений стала разработка инженеров Университета Британской Колумбии в Оканагане, которые предложили принципиально иной подход к очистке воздуха в присутствии людей.
По словам профессора Школы инженерии доктора Санни Ли, традиционные персонализированные вентиляционные системы действительно могут улучшать качество воздуха вокруг пользователя, однако их принцип работы имеет ряд ограничений. Человек вынужден находиться в строго определенной зоне, а одновременное использование одной системы несколькими людьми снижает эффективность. Кроме того, непрерывный поток сухого очищенного воздуха способен вызывать ...>>
Гаджеты научились передавать изображение и звук с впечатляющей реалистичностью, но тактильные ощущения по-прежнему остаются недоступными для полноценной цифровой симуляции. Именно поэтому инженеры и исследователи во всем мире стремятся создать технологии, которые позволят "почувствовать" виртуальный объект так же естественно, как и настоящий. Новая разработка специалистов Северо-Западного университета США стала одним из самых заметных шагов в этом направлении.
Возглавлявшая исследование аспирантка Сильвия Тан (Sylvia Tan) подчеркивает, что прикосновение остается последним фундаментальным чувственным каналом, для которого пока нет зрелого цифрового аналога. По ее словам, если визуальные и звуковые интерфейсы давно обеспечивают высокую степень реалистичности, то осязание лишь начинает приближаться к этому уровню. В недавней публикации в журнале Science Advances Тан отмечает, что новая технология способна изменить само представление о взаимодействии человека с устройствами.
Разработ ...>>
Случайная новость из Архива
Безлинзовая ИК-система
02.10.2025
Инфракрасные технологии занимают особое место в науке и технике. Они позволяют заглянуть туда, где человеческий глаз бессилен, - в темноту, сквозь дымку или туман, на значительные расстояния. Однако развитие этой области сдерживают дорогие и капризные камеры, требующие охлаждения и сложного обслуживания. Китайские исследователи предложили неожиданный выход: создание безлинзовой системы, которая превращает невидимое инфракрасное излучение в четкие изображения с помощью оптики нового поколения.
В основе этой разработки лежит древняя идея "изображения через отверстие", о которой еще в IV веке до нашей эры писал философ Мо-цзы. Современные ученые пошли дальше и вместо физической дырочки сформировали оптическое отверстие прямо в нелинейном кристалле, используя сверхкороткие лазерные импульсы. Такое решение позволяет преобразовывать инфракрасное излучение в видимый свет, который без труда фиксируется обычными кремниевыми сенсорами.
Руководитель проекта профессор Хэпинг Цзэн подчеркивает, что именно в среднем инфракрасном диапазоне сосредоточено множество полезных сигналов. Но существующие камеры дороги, нестабильны и шумны, что ограничивает их применение. Новая технология снимает эти препятствия, предлагая простую конструкцию и использование стандартных датчиков, доступных в массовом производстве.
Система уже продемонстрировала впечатляющие характеристики: глубину резкости более 35 сантиметров и поле зрения свыше 6 сантиметров при длине волны около 3,07 микрометра. Радиус оптической апертуры в 0,20 миллиметра позволил исследователям получать четкие изображения объектов, расположенных на расстоянии 11, 15 и даже 19 сантиметров. Важно, что высокое качество сохраняется даже в условиях крайне слабого освещения.
По словам Куна Хуана из Восточнокитайского педагогического университета, ключевым элементом системы стали синхронизированные лазерные импульсы, которые обеспечивают передачу изображения даже при минимальном количестве фотонов. Благодаря этому удается фиксировать мельчайшие детали без искажений, сохраняя широкое поле зрения и значительную глубину.
Еще одним достижением стало внедрение 3D-визуализации. Используя метод времени пролета, исследователи смогли воссоздать объемную модель керамического кролика с микронной точностью. В другом варианте, основанном на двухкадровом глубинном изображении, удалось определить пространственное положение объектов, находящихся друг над другом на расстоянии до 6 сантиметров, при этом обходясь без сложной синхронизации.
Практические перспективы этой технологии впечатляют. Она может применяться в ночном наблюдении, промышленном контроле, экологическом мониторинге. Простота конструкции и использование обычных сенсоров делают систему портативной и энергоэффективной, а значит, более доступной по сравнению с существующими инфракрасными установками.
Пока что оборудование остается громоздким и требует крупной лазерной установки, но ученые уже работают над созданием компактных источников света и новых нелинейных материалов. В будущем они намерены расширить возможности системы на более длинные инфракрасные волны и добавить динамическое управление формой оптического отверстия. Таким образом, перед исследователями открываются новые горизонты, которые могут изменить само представление о том, как человек видит мир в невидимом спектре.