Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


На пороге далеких миров. Детская научная лаборатория

Детская научная лаборатория

Справочник / Детская научная лаборатория

Комментарии к статье Комментарии к статье

Еще сравнительно недавно казалось, что между радиоэлектроникой и астрономией нет и не может быть ничего общего. Однако в наши дни подобное мнение безнадежно устарело. Теперь на астрономических конференциях, наряду с вопросами исследования планет и звезд, докладывают о новых электронных приборах, обсуждают не только фотографии обратной стороны Луны, но и электронную аппаратуру, обеспечившую их передачу... Радиоинженеры ныне составляют значительную часть персонала обсерваторий. Это и понятно: в новых больших телескопах электроники не меньше, чем оптики.

Вот одни из многочисленных примеров. На рис. 1 приведен автоматический электронный поляриметр, разработанный в Абастуманской астрофизической обсерватории Академии наук Грузинской ССР. Этот прибор является электронным вычислительным устройством недискретного действия. Измеряя определенные параметры луча света, он решает несколько уравнений, куда входят эти параметры, и за 0,01 секунды вычисляет результат. Схема состоит из 38 электронных ламп и 35 диодов. Исследования Луны и планет, проводимые в обсерватории с помощью нового прибора, позволяют получить ценные данные о составе и строении их поверхности.

На пороге далеких миров
Рис. 1. Автоматический электронный поляриметр. Навесной блок закреплен на 40-сантиметровом рефракторе

Электронные приборы и методы, используемые в астрономии, чрезвычайно интересны и своеобразны.

Известно, что глаз реагирует лишь на очень небольшой интервал длин волн в диапазоне электромагнитных колебаний - от 4200 до 7000 ангстрем, что соответствует частотам от 430 до 715 миллионов мегагерц. В этом диапазоне оптическую астрономию интересуют измерение световых потоков - фотометрия; распределение энергии излучения по диапазону - спектрометрия; определение плоскости, в которой лежит электрический вектор колебаний, и соответствующих количественных соотношений - поляриметрия, а также ряд других задач. Все они решаются методами электроники. Разумеется, любой электронный прибор должен начинаться с приемника лучистой энергии, отвечающего на нее появлением тока, напряжения или изменением сопротивления. Эти приемники характеризуются прежде всего диапазоном, в котором они должны работать, и чувствительностью.

Самым распространенным видом приемника, применяемым в астрономии, является фотоэлектронный умножитель (ФЭУ). Он представляет собой комбинацию обычного вакуумного фотоэлемента с электронным умножителем.

Такая система может быть чувствительнее самого острого зрения, но и у нее есть предел. Прежде всего, фотокатод имеет небольшую тепловую эмиссию. Усиленная в миллионы раз, она становится ощутимой, и поэтому ток на выходе ФЭУ имеется при отсутствии света.

Другое ограничение накладывается квантовой структурой света: поток 1000 квантов в секунду довольно легко может быть измерен, но неравномерное поступление квантов создает дополнительный дробовой эффект.

ФЭУ изготовляются с различными типами катодов, что позволяет применять их для всех частей диапазона, кроме далеких инфракрасных областей. ФЭУ - типично "одноканальные" устройства; они не могут передать распределение яркости по точкам фотокатода.

На рис. 2 изображена схема астрономического фотометра. Диск с отверстиями, вращаемый синхронным двигателем, модулирует световой поток. Синхронно с модуляцией работает фазовый детектор с большой постоянной времени, который позволяет выделить из шумов сигнал даже тогда, когда отношение сигнал/шум не превосходит 0,001. Специальное программное устройство производит контрольные измерения, сравнивает и затем печатает результат. Этот прибор также создан в Абастуманской обсерватории.

На пороге далеких миров
Рис. 2. Фотометр, применяемый в астрономии (программное устройство не показано)

Большой интерес представляет идея фотоэлектронного устройства, позволяющего автоматически сопровождать звезды телескопом (фотогид). Приемником в нем служит ФЭУ. Фотогид (рис. 3) разработан в Ленинградском институте электромеханики.

На пороге далеких миров
Рис. 3. Устройство автоматического сопровождения звезды телескопом (фотогид). При вращении полудиска ток ФЭУ будет неизменным только в том случае, если луч света проходит точно по его оси; в противном случае ток оказывается модулированным, что вызывает включение корректирующих двигателей.

Незаменимыми инструментами для астрономов являются термоэлемент и болометр. Они могут применяться в диапазоне от видимого света до субмиллиметровых радиоволн. Других приборов такой широкополосности не существует.

Термоэлемент - это миниатюрная термопара, обычно помещаемая в вакуум. Место спая двух разнородных проволочек зачернено таким образом, что все падающее на него излучение поглощается, слегка нагревая спай. Появляется термо э.д.с. которую можно измерить высокочувствительным низкоомным гальванометром. Усиление этой э.д.с. ламповыми схемами затруднительно, так как она очень невелика, а низкое сопротивление без преобразователя использовать не удается. Здесь представляет большой интерес использование транзисторных схем с низким входным сопротивлением, однако осложнение вносят шумы транзисторов.

Болометр представляет собой две маленькие металлические пластинки толщиной в доли микрона, которые также зачернены и помещены в вакуум. Лучистый поток, подлежащий измерению, направляют на одну из них. В схеме электрического моста, благодаря изменению сопротивления этой пластинки, вызванному ее нагреванием, появляется разбаланс, пропорциональный количеству поглощенной лучистой энергии. Болометр тоже инерционен, а мостик обладает низким выходным сопротивлением.

Эти приборы, чаще всего применяемые как приемники инфракрасных лучей, являются одноканальными. Правда, недавно был разработан экран из светочувствительной мозаики полупроводникового типа (фотосопротивления), являющийся многоканальным прибором. Порог чувствительности термоэлементов и болометров не превышает 10-11 Вт при постоянной времени около 1 секунды.

Единственным в своем роде "многоканальным" устройством, где электронный поток несет информацию обо всем изображении одновременно, является электронно-оптический преобразователь (ЭОП). Полупрозрачный фотокатод, как и в ФЭУ, нанесен на внутреннюю поверхность торца колбы. Естественно, что и здесь катод определяет спектральное назначение: сурмяно-цезиевый катод хорошо работает в зелено-фиолетовой и ультрафиолетовой областях, висмуто-цезиевый охватывает весь видимый диапазон, а кислородно-серебряно-цезиевый позволяет проникнуть в близкие инфракрасные области. Имеются и другие типы фотокатодов.

Специальные электронные линзы, представляющие собой образованные особыми электродами электрические поля, направляют фотоэлектроны на анод, подобно устройствам фокусировки луча в кинескопах. Осуществляется это таким образом, что структура потока не искажается и перенос изображения сопровождается только его уменьшением. Анодом является флюоресцирующий экран, где можно рассматривать или фотографировать изображение. Назначение ЭОП'ов заключается в том, чтобы увеличивать яркость изображения и, если это необходимо, преобразовывать его из невидимого, например инфракрасного, в видимое.

Совершенствование этих приборов привело к созданию многокаскадных ЭОП'ов, где яркость изображения последовательно усиливается. Реальным для трехкаскадного ЭОП'а является усиление яркости в 60-120 раз, в то время как однокаскадный дает усиление в 6-15 раз. В другом случае стало возможно более полное использование света экрана - анода, для чего толщину колбы в этом месте снижают до десятых долей миллиметра, а снаружи к ней прижимают фотопленку ("контактный ЭОП" или "фотоконтактная трубка"). Были также разработаны конструкции, где фотопластинка помещалась изнутри на месте анода. Однако, чтобы достать ее, требовалось разбить колбу. Даже при нескольких пластинках, сменяемых остроумным приспособлением, это обходится слишком дорого.

Совсем недавно стали применяться телевизионные астрономические системы. В Советском Союзе наиболее значительная работа в этом направлении проделана старшим научным сотрудником Пулковской обсерватории Н. Ф. Купревичем. В созданной им установке используется метод накопления, заключающийся в том, что слабое изображение длительно проектируется на фотокатод суперортикона при отсутствии развертывающего луча. При этом на соответствующих электродах трубки "накапливается" потенциальный рельеф. Затем включается однократная развертка, и на экране телевизора замкнутой телевизионной системы появляется изображение с сильно увеличенной яркостью (того же порядка, что и у многокаскадных ЭОП'ов). Однократная развертка устраняет трудности, связанные с фотографированием.

Довольно сложная в наладке и эксплуатации, телевизионная система обладает большими возможностями. Так, мелкие детали изображений астрономических объектов на фотопластинках всегда выглядят размытыми.

Объясняется это непрерывным дрожанием изображений. Подобное явление известно каждому по мерцанию звезд. Телевизионная же система за счет увеличения яркости позволяет уменьшить длительность экспозиции, а следовательно, и "размыв" изображений. Телевизионная система является, по существу, одноканальной, но благодаря построчному разложению, она способна передавать изображения, что роднит ее с ЭОП'ом. По пороговой чувствительности оба эти приемника уступают хорошему ФЭУ.

Фотогид для автоматического сопровождения звезды телескопом

Из всего сказанного видно, что современная наука предоставила в распоряжение астрономов очень сильные технические средства. Казалось бы, теперь не остается основании для неудовлетворенности. Однако, это не так. Известно, например, что сейчас некоторые астрономические наблюдения уже выполняются без участия человека - со спутников. Весь мир видел фотографии обратной стороны Луны, сделанные "электронным астрономом" - советской АМС, запущенной 4 октября 1959 года. Очевидно, что в этом случае другой путь был невозможен. Также была необходима посылка АМС к Венере, поскольку орбита этой планеты находится внутри орбиты Земли и в моменты сближения с Землей она обращена к нам темной, а потому невидимой стороной.

Множество важных задач ожидает своего разрешения путем выноса астрономических приборов за пределы земной атмосферы. Взять, к примеру, планету Марс - нашего ближайшего соседа. Загадка Марса (его "каналы" и другие детали) не дают покоя не только астрономам. Немало загадок и у других светил; даже у Луны их очень много. Казалось бы, стоит только посмотреть в телескоп с большим увеличением и многое станет ясным. Но в действительности это не так. Вместо четких контуров планеты вы увидите дрожащий, как пламя свечи на ветру, шарик с непрерывно плывущими туманными пятнами. Это - влияние земной атмосферы, где потоки воздуха разной плотности создают непрерывно меняющееся преломление световых лучей. Даже при очень спокойной атмосфере не удается различить сколько-нибудь мелкие детали изображений. Однако дрожания и мерцания - лишь одна сторона дела. Вся беда в том, что подавляющая часть диапазона электромагнитных излучений до поверхности Земли не доходит. Между тем изучение именно этой части диапазона может дать науке не меньше, чем слепому прозрение.

Вот почему вынос обсерватории за пределы атмосферы - сначала на искусственный спутник, а затем на Луну - назревшая необходимость.

Не трудно также понять, что, пользуясь маленьким телескопом, какое бы увеличение он ни давал, невозможно различить мелкие детали на планетах. Это немыслимо еще и потому, что сказывается так называемый дифракционный предел. Например, чтобы различить на поверхности Луны детали размером в 40 м, нужен телескоп с диаметром объектива не менее 65 см. Но большие телескопы оказываются настолько тяжелыми, что гнутся под действием своего веса. Приходится увеличивать жесткость конструкции, что, в свою очередь, увеличивает вес и т. д.

Есть ли выход из этого положения? Да, есть. Он состоит в том, что большой - телескоп, установленный на спутнике, ничего не будет весить. Его жесткость может быть снижена до минимума, при этом масса конструкции окажется небольшой и вывод ее на орбиту обойдется не слишком дорого.

В дальнейшем телескопы, видимо, целесообразнее устанавливать на Луне, где они будут весить в 6 раз меньше, чем на Земле. Можно без преувеличения сказать, что такая "внешняя обсерватория", оснащенная современной электронной техникой и вычислительными машинами (они могут быть расположены на Земле), способна за короткое время решить не одну сотню сегодняшних проблем. Интересно отметить, что ночь на Луне в 29,5 раз длиннее земной, как, впрочем, и день. Следовательно, вести там наблюдения можно и днем и ночью. На Луне и в космосе станет возможным применять новые открытые электронные приборы; ведь вакуум там такой, какого еще ни в одной лампе достичь не удалось.

Наконец, нельзя не упомянуть еще об одной проблеме, которая ныне переходит со страниц фантастических романов в лаборатории ученых. Речь идет о космическом радиоизлучении искусственного происхождения. Важно будет не только принять его, но и расшифровать. Несмотря на имеющиеся предсказания о конкретной длине волны, где следует искать эти сигналы, должен быть изучен весь диапазон.

Достижения советской науки и техники, исторические полеты советских пассажирских космических кораблей, величайшие успехи пашей Родины в покорении космического пространства наглядно свидетельствуют о том, насколько успешно осуществляются в Советском Союзе вековые мечты человечества, планы, недавно считавшиеся утопией. Мы уверены, что недалеко время, когда за наблюдениями и проверкой гипотез советские астрономы смогут отправляться на Луну.

Автор: Л. Ксанфомалити

 Рекомендуем интересные статьи раздела Детская научная лаборатория:

▪ О Луне, ртути и землетрясениях

▪ Подводная молния

▪ Молния на столе

Смотрите другие статьи раздела Детская научная лаборатория.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Горькие продукты улучшают работу мозга 08.11.2025

Как выяснили японские ученые, горький вкус флаванолов играет важную роль в стимуляции центральной нервной системы. Даже при минимальном усвоении этих веществ организм получает сигнал к повышению активности нейромедиаторов и улучшению когнитивных функций, что делает натуральные продукты с горьким вкусом потенциально полезными для мозга и общей физиологии. В поисках способов улучшить работу мозга ученые все чаще обращаются к натуральным соединениям, содержащимся в привычных продуктах питания. Одним из таких веществ являются флаванолы, присутствующие в какао, красном вине и ягодах. Исследователи из Технологического института Сибаура в Японии выяснили, что горький и вяжущий вкус этих соединений способен активировать мозг через вкусовые рецепторы, способствуя улучшению памяти, внимания и способности к обучению. Ранее было известно, что флаванолы защищают нейроны и поддерживают когнитивные функции, однако их биодоступность - доля вещества, поступающая в кровь - крайне низка. Это вызвал ...>>

Дождевой электрогенератор 08.11.2025

Группа разработчиков Нанкинского университета аэронавтики и астронавтики представила дождевой электрогенератор, который превращает дождевые капли в источник электричества, используя саму воду как структурный и электрический элемент. В отличие от традиционных капельных генераторов, где электричество создается на твердых диэлектрических пленках с металлическими электродами, новое устройство плавает непосредственно на поверхности воды. Вода одновременно выполняет роль опоры и проводника, что позволило снизить вес системы на 80%, а стоимость уменьшить почти наполовину, сохранив при этом мощность до 250 вольт на каждую каплю. "Мы позволили воде одновременно выполнять структурную и электрическую функции, создав легкую, доступную и масштабируемую систему", - объяснил профессор Ванлин Гуо, ведущий автор исследования. Такая концепция открывает путь к созданию гидровольтаических систем, которые могут работать в водоемах без использования суши, дополняя солнечные и ветровые технологии. П ...>>

Климат влияет на длительность беременности 07.11.2025

Беременность традиционно воспринимается как естественный биологический процесс с предсказуемыми сроками, однако современные исследования все чаще доказывают, что на ее продолжительность влияют факторы, выходящие далеко за пределы медицины. Среди них особое место занимают климат и окружающая среда - именно эту взаимосвязь впервые подробно изучили ученые из Университета Кертина в Австралии. Их работа раскрывает, что экстремальные погодные условия способны не только вызывать преждевременные роды, но и, напротив, удлинять срок беременности. Команда исследователей проанализировала данные почти 400 тысяч новорожденных, появившихся на свет в Западной Австралии. Результаты оказались неожиданными: климатические колебания заметно влияли на организм будущих матерей, особенно у тех, кто рожал после 41-й недели беременности. По словам доктора Сильвестра Додзи Ньядана из Школы народного здоровья Университета Кертина, проблема перенашивания долгое время оставалась в тени, хотя ее последствия могут ...>>

Случайная новость из Архива

Бетон для строительства на Марсе 24.03.2023

Инженеры из Манчестерского института сделали особый бетон для стройки на Марсе. Он состоит из пыли и картофельного крахмала и вдвое прочнее обычного.

Новый бетон назвали StarCrete, его прочность при сжатии - 72 мегапаскаля.

Картофельный крахмал смешивают с марсианской пылью, содержащей магниевую соль - это значительно увеличивает прочность бетона. Сам хлорид магния легко добыть на поверхности Красной планеты.

На Земле из такого бетона строить нельзя - он разрушится из-за воды, но такой материал пригодится на Марсе, где не бывает дождей.

Другие интересные новости:

▪ Таблетки вместо спорта

▪ Монитор Samsung U32D970Q с разрешением UHD

▪ Защищенная камера Olympus Tough TG-870

▪ Антирекорд выбросов углекислого газ

▪ Разгадана главная тайна Плутона

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Акустические системы. Подборка статей

▪ статья Мы мирные люди, но наш бронепоезд стоит на запасном пути. Крылатое выражение

▪ статья Каких размеров Вселенная? Подробный ответ

▪ статья Проведение демонстрационных опытов по биологии. Типовая инструкция по охране труда

▪ статья Прибор-индикатор для нахождения скрытой проводки и металлической арматуры. Энциклопедия радиоэлектроники и электротехники

▪ статья Регулятор частоты вращения трехфазных асинхронных двигателей. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025