Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Слушая океан. Детская научная лаборатория

Детская научная лаборатория

Справочник / Детская научная лаборатория

Комментарии к статье Комментарии к статье

Вы обращали, наверное, внимание: по отношению к морям, океанам слово "тайна" употребляется столь же часто, как и по отношению к космосу. Это не случайно. Исследования океана очень и очень трудны. И хотя знания об этой стихии все время копятся, непонятного и сегодня очень много.

В чем же трудности? Ведь с борта исследовательского судна можно опустить на любую глубину приборы и определить состав морской воды, соленость, скорость и температуру течений. Следить за жизнью обитателей моря помогают глубоководные телекамеры. Есть и батискафы, в которых можно опускаться на огромные глубины.

Все это так. Но море изменчиво. И если так называемые стационарные течения, день изо дня, год от года следующие в одном направлении и на одной глубине, действительно изучить относительно просто, то как быть с возмущениями воды, возникающими и исчезающими в течение нескольких часов? Как исследовать кольцевые подводные вихри, порождающие, по мнению ученых, циклоны или антициклоны, изменяющие погоду на всем земном шаре? Ведь времени на то, чтобы "нащупать" их, зондируя приборами глубины, просто нет. Даже следить за движением косяков рыбы, чтобы давать четкие команды рыболовецким судам, непросто и дорого. Для этого приходится содержать чуть не целый воздушный флот, причем эффективность его не столь уж велика, так как обнаружить с воздуха косяк можно лишь на относительно небольшой глубине. Поэтому уже давно ученые ищут метод, который позволил бы получить подробную и цельную картину явлений, происходящих в море, а не только отрывочные данные, полученные в точках, куда исследовательские суда опустили свои измерительные приборы.

Конечно, заманчивее всего было бы просветить толщу воды каким-либо излучением, наподобие того, как рентгеновский аппарат просвечивает бетонные панели домов, показывая на фотопленке все их дефекты. Но в воде рентгеновские лучи затухают, не пробежав и десятка метров. Столь же быстро затухают и радиоволны. Так что и радиолокатор под водой оказался бы слеп. Быстро рассеиваются и световые лучи. Остается звук...

Специалисты давно знают, что звук распространяется в воде на значительные расстояния. Но пригоден ли он для использования в подводном локаторе?

Слушая океан
Так устроен подводный "динамик"

Чтобы ответить на этот вопрос, ученые из Института общей физики АН СССР поставили такой эксперимент: на подводной части исследовательского судна закрепили излучатель звука - массивный металлический цилиндр с двумя крышками-мембранами и электромагнитом внутри. К обмоткам электромагнита подключили генератор напряжения звуковой частоты, и судно вышло в открытое море.

Слушая океан
Вот еще одна из загадок океана: чем дальше уходит судно от берега, тем больше амплитуда звука, который принимает гидролокатор

Шло время. Судно уходило все дальше, а установленный возле берега гидрофон уверенно принимал его сигнал. Даже 400 километров расстояния почти не ослабили звуковую нить, связывающую судно с берегом,- гидрофон по-прежнему отчетливо принимал звук излучателя.

Получилось, что возле берега можно принимать звуковое эхо процессов, происходящих в море и за тысячи километров от гидрофона. Это и попробовали сделать, но, прослушав сигналы гидрофона, которые в другом эксперименте на протяжении нескольких суток подряд записывал магнитофон, ученые обнаружили нечто не поддающееся расшифровке: на магнитной ленте оказалась хаотичная смесь всех возможных звуков, от инфранизких до ультравысоких. Разобраться в подобной звуковой каше не помогла бы никакая ЭВМ.

Стало ясно, что прослушивать море бесперспективно. Нужно его зондировать, именно прощупывать собственным звуком, наподобие того, как это делает локатор. Впрочем, впрямую принцип, на котором работает локатор, физикам не подходил. Вы знаете, наверное, что локатор посылает в небо радиосигналы и улавливает их отражение. Можно было предположить, что косяк рыбы в воде тоже способен отразить попавший на него звуковой сигнал - плотность его отличается от плотности воды. Но кольцевой вихрь или течение скорее всего не отразят звук или отразят очень слабо. Вода ведь и есть вода, и звуку безразлично, спокойна она или движется. Поэтому излучатель звука и гидрофон решили разнести на расстояние в десятки километров. Расчет был на то, что возмущения воды или тот же косяк рыбы, оказавшийся между ними, хоть немного, но помешают звуку распространяться в воде, исказят его амплитуду или фазу. А чтобы в усилитель гидрофона не попадали посторонние сигналы, в него решили встроить фильтр, очень точно настроенный на частоту излучателя звука.

Далее следовало подумать о полной схеме звукового зондирования моря. И здесь физики прежде всего вспомнили об эффекте Доплера.

Вы наверняка не раз сталкивались с этим эффектом. Вспомните: когда к станции приближается электричка, гудок ее выше, нежели когда она прошла мимо. Это происходит потому, что вначале скорости звука и электрички складываются, звук летит быстрее, и частота его для неподвижного наблюдателя становится выше. Затем скорость электрички уже вычитается из скорости звука. Частота его снижается.

Для широкополосного приемника звука, как наше ухо, это неважно. Но если он настроен только на частоту гудка, как гидрофон на частоту излучателя, то ни более высокая, ни более низкая частоты слышны не будут. Поэтому излучатель звука решили установить на дне моря неподвижно, а не на судне, которое своим движением могло бы изменить частоту.

Слушая океан
На этом рисунке хорошо видно, как разнятся фазы сигналов из-за того, что кабель с гидрофонами уложен не точно по радиусу

Одного гидрофона для точного анализа было, как рассудили ученые, недостаточно. Чтобы перекрыть как можно большее пространство, приемников звука нужно хотя бы несколько десятков. Тогда удастся не только зарегистрировать косяк рыбы или кольцевой вихрь, но и следить за их перемещениями. То есть можно будет создать некую пространственную картину возмущений в море и выяснять, что эти возмущения вызвало.

Долго можно рассказывать, как готовили аппаратуру для эксперимента - встраивали в гидрофоны специальные предварительные усилители, способные и слышать слабые сигналы, и не "глохнуть" от слишком сильных, как искали варианты защиты их от давления воды и от коррозии, как выбирали наиболее интересный с точки зрения науки участок моря... Сложностей при подготовке было немало. Поджидали они ученых и во время эксперимента.

После того как излучатель звука и полсотни гидрофонов на общем кабеле погрузили на дно моря и включили все приборы, вместо ожидаемого сигнала исследователи увидели на экране осциллографа пятьдесят сигналов с различными фазами - все гидрофоны работали не вместе, а вразнобой.

Причина оказалась простой: для того чтобы все гидрофоны работали, как говорится, в унисон, расстояние от каждого из них до излучателя звука должно быть одинаково. Тогда все сигналы придут на них в одной фазе. Но ведь на стометровую глубину кабель не уложить идеально ровно, с точностью до микронов. Как он ляжет на дно - дело случайности.

И все же гидрофоны удалось заставить работать в одной упряжке. Физики выравняли фазы с очень высокой точностью, разработав специальные электронные фазосдвигающие устройства. И теперь стационарная трасса - так назвали специалисты свой подводный звуковой локатор - уже дает информацию. Сейчас теоретики анализируют ее, отыскивая закономерности, которые позволят точно определить, что означает то или иное искажение сигнала, какому явлению в море оно соответствует.

В перспективе такие трассы ученые думают установить на всех морях и океанах. И недалеко, видимо, время, когда тайн у них станет намного меньше.

Автор: А.Фин

 Рекомендуем интересные статьи раздела Детская научная лаборатория:

▪ Как воду заставили течь наверх

▪ Телескоп без единого стекла

▪ Под давлением

Смотрите другие статьи раздела Детская научная лаборатория.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 12.11.2025

Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам. Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта. Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>

Дефицит кислорода усиливает выброс закиси азота 12.11.2025

Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски. Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота. В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Случайная новость из Архива

Видеокамера для профессионалов 26.10.2011

Handycam NEX-VG20E от Sony - это новая видеокамера высшего ценового сегмента. Устройство оснащено CMOS-матрицей Exmor APS HO с разрешением 16,1 мегапикселя и байонетом Е для подключения сменной оптики Sony.

При съемке видео высокой четкости (1080р) в формате AVCHD камера позволяет выбирать режим частоты кадров - 50р или 25р. Постобработка отснятых роликов с помощью функций "Cinema Tone Gamma" и "Cinema Tone Colour" делает их максимально похожими по качеству на настоящий кинофильм. Также камера обладает качественным встроенным микрофоном, способным записывать звук в формате 5.1.

Кроме видеорежима предусмотрена и съемка фотографий, включая работу с изображениями в формате RAW. Sony Handycam NEXVG20E появится в продаже уже в ноябре по цене от 2200USD.

Другие интересные новости:

▪ После динозавров на земле правили грибы

▪ Превращение углекислого газа в спирт

▪ Робот-адвокат

▪ Умная кровать с механизмом антихрапа

▪ Города станут чище

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Синтезаторы частоты. Подборка статей

▪ статья Могучая кучка. Крылатое выражение

▪ статья Когда один момент был равен полутора минутам? Подробный ответ

▪ статья Температура воздуха. Советы туристу

▪ статья Двухдиапазонный УКВ ЧМ радиоприемник на микросхеме К174ХА34А. Энциклопедия радиоэлектроники и электротехники

▪ статья Стереофонический передатчик. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025