Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Патологическая анатомия. Регенерация. Заживление ран (конспект лекций)

Конспекты лекций, шпаргалки

Справочник / Конспекты лекций, шпаргалки

Комментарии к статье Комментарии к статье

Оглавление (развернуть)

ЛЕКЦИЯ № 7. Регенерация. Заживление ран

Регенерация - это восстановление структурных элементов ткани взамен погибших. Это восстановление как структуры, так и функции. К факторам, влияющим на ход регенерации, относятся: общие (возраст, интенсивность обменных процессов, состояние кроветворной и иммунной систем и др.) и местные (состояние сосудов, нейротрофики, лимфообращения, структурно-функциональные особенности органов и тканей, объем повреждения).

Механизмы регуляции регенерации:

1) гуморальные факторы - кейлоны, которые представляют собой гликопротеины и их вырабатывают зрелые неповрежденные клетки (эпителиальные, клетки крови и т. д.). Эти вещества выбрасываются в кровь и сдерживают пролиферацию, повышают синтез ДНК и снижают митотическую активность. Антикейлоны (мезенхимальный фактор) вырабатываются в соединительной ткани (содержат белки и сиаловые кислоты);

2) гормональные факторы:

а) соматотропный гормон гипофиза стимулирует пролиферацию и активную регенерацию;

б) минералокортикоиды стимулируют, а глюкокортикостероиды сдерживают воздействие на регенерацию;

в) гормоны щитовидной железы стимулируют процесс регенерации;

3) иммунные факторы - лимфоциты выполняют информационную роль, Т-лимфоциты стимулируют эффект заживления, а В-лимфоциты угнетают;

4) нервные механизмы регуляции прежде всего связаны с трофической функцией нервной системы;

5) функциональные механизмы - с функциональным запасом органа и (или) ткани.

Фазы регенерации:

1) фаза пролиферации - происходит увеличение числа клеток или ультраструктур (это молодые камбиальные клетки - клетки-предшественники)); эта фаза осуществляется за счет факторов роста: тромбоцитарного, эпидермального, фибробластического, макрофагального и лимфоцитарного;

2) фаза дифференцировки - молодые клетки созревают, происходит их структурно-функциональная специализация. Классификация регенераций:

1) по уровню регенерации: молекулярный, клеточный, субклеточный, тканевый, органный, системный;

2) по форме:

а) клеточная регенерация возникает в тех органах или тканях (в эпидермисе, эпителии слизистых оболочек, эндотелии и мезотелии серозных оболочек, соединительной и кроветворной тканях), где находятся лабильные клетки, которые имеют ограниченный срок жизни; осуществляется эта форма регенерации путем увеличения числа клеток (гиперплазия);

б) смешанная регенерация возникает в органах и тканях, содержащих стабильные клетки (легкие, печень, почки, поджелудочная железа, эндокринные железы); регенерация осуществляется путем гиперплазии самих клеток, а также путем гиперплазии ультраструктур внутри клеток; если в печени небольшой очаг, то идет клеточная форма регенерации, а при большом повреждении регенерация происходит путем сочетания ультраструктур и самих клеток;

в) внутриклеточная регенерация происходит исключительно в ганглиозных клетках ЦНС;

3) по видам регенерации - физиологическая, репаративная и патологическая.

Физиологическая регенерация не связана с действием какого-либо повреждающего фактора и осуществляется с помощью апоптоза. Апоптоз - это генетически запрограммированная гибель клетки в живом организме. Некроз осуществляется при участии гидро- и протеолитических ферментов при обязательном явлении апоптоза. Апоптоз осуществляется за счет активации кальций- ,магнийзависимых эндонуклеаз, возникает фрагментация ядра и всей клетки. Клетка делится на апоптозные тельца. Каждый фрагмент содержит элементы ядра, цитоплазму. Это фаза образования апоптозных телец. Затем следует фаза фагоцитоза - апоптозные тельца захватывают рядом расположенные клетки и макрофаги. Никакой воспалительной реакции не происходит.

Репаративная регенерация происходит при возникновении различных повреждающих факторов (травма, воспаление). Полная регенерация, или реституция, - полное структурное и функциональное восстановление; неполная регенерация, или субституция, возникает в органах с внутриклеточной формой регенерации и в органах со смешанной формой регенерации, но при обширном повреждении. При инфаркте миокарда зона некроза замещается соединительной тканью, по периферии рубца происходит гипертрофия кардиомиоцитов, так как в них самих увеличиваются ультраструктуры и их количество. Все это направлено на восстановление функций. Соединительная ткань окрашивается по Ван-Гизону в зеленый цвет, а рубец в красный.

Патологическая регенерация может быть избыточной (гиперрегенерация), замедленной (гипорегенерация), метаплазией и дисплазией. Избыточная регенерация возникает при выраженной активации первой фазы регенерации (костные мозоли при переломах, экзостозы - костные выросты на подошвенной поверхности стоп, келоидные рубцы, аденома). Гипорегенерация имеет место, когда фаза пролиферации протекает вяло. Это происходит в таких органах и тканях, где имеется хроническое воспаление и где часто нарушаются процессы сосудистой и нервной трофики (трофические язвы на нижних конечностях, длительно незаживающие раны кожи у диабетиков, хроническая язва желудка). Метаплазия возникает в органах и тканях с клеточной формой регенерации, и нередко ей предшествует хроническое воспаление - например, у курильщиков и у людей с хроническим бронхитом происходит превращение призматического эпителия в плоский многослойный с дальнейшим ороговением. Процесс может быть обратимым, если бросить курить и провести интенсивное комплексное лечение; как неблагоприятное течение - рак бронха с переходом на легкое. При анемиях и болезнях крови происходит метаплазия желтого костного мозга в красный. Это компенсаторный механизм. При метаплазии соединительной ткани происходит ее перерождение в хрящевую, а затем в костную. В слизистой желудка на фоне хронического гастрита метаплазия возникает, когда появляются бокаловидные клетки, которые являются предшественницами онкологического процесса. Дисплазия возникает при нарушении пролиферации и при дифференцировке клеток, поэтому появляются атипичные клетки, т. е. имеющие различные формы и величину, имеющие крупные гиперхромные ядра. Такие клетки появляются среди обычных эпителиальных клеток (в эпителии слизистой желудка, матки, кишечника).

Различают три степени дисплазии: легкая, умеренная, тяжелая (когда почти все клетки эпителиального пласта становятся атипичными и диагностируются как рак на месте).

В течении регенерации соединительной ткани различают III этапа.

I. Образование молодой, незрелой соединительной - грануляционной - ткани. В ней различают тонкостенные кровеносные сосуды в большом количестве, единичные лейкоциты, макрофаги и межуточное вещество (белки, глюкоза и аминокислоты).

II. Образование волокнистой соединительной ткани (большое количество фибробластов, тонких коллагеновых волокон и многочисленных кровеносных сосудов определенного типа.

III. Образование рубцовой соединительной ткани, в которой содержатся толстые грубые коллагеновые волокна, небольшое количество клеток (фиброцитов) и единичные кровеносные сосуды с утолщенными склерозированными стенками.

Заживление ран относится к репаративной регенерации. Различают четыре вида: непосредственное закрытие дефекта наползающим эпителием, заживление под струпом, заживление первичным и вторичным натяжением. Непосредственное закрытие дефекта эпителиального покрова - это простейшее заживление, заключающееся в наползании эпителия на поверхностный дефект и закрытии его эпителиальным слоем. Наблюдаемое на роговице и слизистых оболочках заживление под струпом касается мелких дефектов, на поверхности которых возникает подсыхающая корочка (струп) из свернувшейся крови и лимфы; эпидермис восстанавливается под корочкой, которая отпадает на 3-5-е сутки.

Первичным натяжением происходит заживление глубоких ран с повреждением не только кожи, но и глубоколежащих тканей;

раны имеют ровные края, не инфицированы и не загрязнены инородными телами. В первые сутки происходит очищение раны лейкоцитами и макрофагами, после чего раневой дефект заполняется грануляционной тканью, которая перерождается в нежный рубчик на 10-15-е сутки. На него ползет эпителий. Вторичным натяжением заживают раны инфицированные, размозженные, загрязненные и с неровными краями; заживают через очищение лейкоцитами и макрофагами на 5-6-е сутки. Это очищение идет очень интенсивно через гнойное воспаление - на 7-8-е сутки раневой канал заполняется грануляционной тканью.

Автор: Колесникова М.А.

<< Назад: Иммунопатологические процессы

>> Вперед: Процессы приспособления (адаптации) и компенсации

Рекомендуем интересные статьи раздела Конспекты лекций, шпаргалки:

Общая социология. Шпаргалка

Основы социологии и политологии. Шпаргалка

Государственные и муниципальные финансы. Шпаргалка

Смотрите другие статьи раздела Конспекты лекций, шпаргалки.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Почтовый космический корабль Arc 03.10.2025

Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение. Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом. Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>

Лазерное обогащение урана 02.10.2025

Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана. Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций. GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>

Случайная новость из Архива

Биоэлектроника с питанием от человека 07.10.2021

Ученые из Калифорнийского университета в Лос-Анджелесе создали мягкое и гибкое биоэлектронное устройство с автономным питанием. Гибкое устройство может получать энергию, необходимую для работы, от движений человеческого тела, например, при сгибании локтя или запястья.

Исследователи обнаружили, что магнитоупругий эффект, который создает заряд, когда небольшие магниты сдвигаются под действием механического давления, возникает в мягкой и гибкой системе, а не только в жесткой системе.

Команда создала концептуальное устройство, используя микроскопические магниты в силиконовой матрице толщиной с лист бумаги. Магнитное поле изменяется по силе по мере движения матрицы, генерируя электричество. Исследователи считают, что их устройство можно использовать для питания ряда носимых и имплантируемых электронных датчиков для мониторинга состояния здоровья.

Одним из уникальных аспектов технологии является то, что она основана на магнетизме, а не на электричестве, поэтому влажность и пот не вредит ее эффективности. Команда создала гибкое устройство, которое было прикреплено к локтю участника исследования с помощью силиконовой ленты.

Исследователи обнаружили, что магнитоупругий эффект в четыре раза больше, чем у любой жесткой системы аналогичного размера. Испытательная система была способна генерировать 4,27 миллиампер на квадратный сантиметр. Созданное исследователями устройство было настолько чувствительным, что могло генерировать энергию из пульсовых волн человека.

Это теоретически позволит создать водонепроницамеый пульсометр с автономным питанием и многие другие интересные устройства.

Другие интересные новости:

▪ Датчик движения Philips Hue управляет освещением

▪ Смартфон, обеспечивающий бесплатную безлимитную связь

▪ iPad стал на 5 градусов горячее

▪ Дом на воде

▪ MPC17C724 - микросхема драйвера мотора

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Альтернативные источники энергии. Подборка статей

▪ статья Специальная теория относительности. История и суть научного открытия

▪ статья Кто опубликовал некролог Фиделю Кастро? Подробный ответ

▪ статья Каепутовое дерево. Легенды, выращивание, способы применения

▪ статья Термостабилизатор для температуры 150...1000 градусов. Энциклопедия радиоэлектроники и электротехники

▪ статья Миниатюрный импульсный сетевой блок питания, 220/5 вольт 3 ватта. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025