Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Общая теория статистики. Выборочное наблюдение (конспект лекций)

Конспекты лекций, шпаргалки

Справочник / Конспекты лекций, шпаргалки

Комментарии к статье Комментарии к статье

Оглавление (развернуть)

ЛЕКЦИЯ №6. Выборочное наблюдение

1. Общее понятие о выборочном наблюдении

Статистическое наблюдение можно организовать как сплошное и несплошное. Сплошное предусматривает обследование всех единиц изучаемой совокупности явления, несплошное - лишь ее части. К несплошному относится и выборочное наблюдение.

Выборочное наблюдение является одним из наиболее широко применяемых видов несплошного наблюдения. В основе этого наблюдения лежит идея о том, что отобранная в случайном порядке некоторая часть единиц может представлять всю изучаемую совокупность явления по интересующим исследователя признакам. Целью выборочного наблюдения является получение информации прежде всего для определения сводных обобщающих характеристик всей изучаемой совокупности. По своей цели выборочное наблюдение совпадает с одной из задач сплошного наблюдения, и поэтому речь может идти о том, какое из двух видов наблюдения - сплошное или выборочное - целесообразнее провести.

При решении этого вопроса необходимо исходить из следующих основных требований, предъявляемых к статистическому наблюдению:

1) информация должна быть достоверной, т. е. максимально соответствовать реальной действительности;

2) сведения должны быть достаточно полными для решения задач исследования;

3) отбор информации должен быть проведен в максимально сжатые сроки для обеспечения ее использования в оперативных целях;

4) денежные и трудовые затраты на организацию и проведение должны быть минимальными.

При выборочном наблюдении эти требования обеспечиваются в большей мере, чем при сплошном. Преимущества выборочного наблюдения по сравнению со сплошным в полной мере можно оценить, если оно организовано и проведено в строгом соответствии с научными принципами теории выборочного метода. Таким принципом является обеспечение случайности отбора единиц и достаточного их числа. Соблюдение принципа позволяет получить такую совокупность единиц, которая по интересующим исследователя признакам представляет всю изучаемую совокупность, т. е. является репрезентативной (представительной).

При проведении выборочного наблюдения обследуются не все единицы изучаемого объекта, т. е. не все единицы генеральной совокупности, а лишь ее некоторая часть, специальным образом отобранная. Первый принцип отбора - обеспечение случайности - заключается в том, что при отборе каждой из единиц изучаемой совокупности обеспечивается равная возможность попасть в выборку. Случайный отбор - это не беспорядочный отбор. Случайный отбор можно обеспечить только при соблюдении определенной методики (например, осуществляя отбор по жребию, применяя таблицы случайных чисел и т. д.).

Второй принцип отбора - обеспечение достаточного числа отобранных единиц - тесно связан с понятием репрезентативности выборки. Понятие репрезентативности отобранной совокупности единиц не следует понимать как ее представительность во всех отношениях, т. е. по всем признакам изучаемой совокупности. Такое представительство обеспечить практически невозможно. Любое выборочное наблюдение проводится с определенной целью и четко сформулированными конкретными задачами, и понятие репрезентативности должно быть связано с целью и задачами исследования. Отобранная из всей изучаемой совокупности часть должна быть репрезентативной прежде всего в отношении тех признаков, которые изучаются или оказывают существенное влияние на формирование сводных обобщающих характеристик.

Введем некоторые понятия, используемые в выборочном наблюдении.

Генеральной совокупностью называется вся изучаемая совокупность единиц, подлежащая изучению по интересующим исследователя признакам.

Выборочной совокупностью называется отобранная в случайном порядке из генеральной совокупности некоторая ее часть. К данной выборке предъявляется требование репрезентативности, что означает возможность, изучая лишь часть генеральной совокупности, распространять полученные выводы на всю совокупность. Характеристиками генеральной и выборочной совокупностей могут служить средние значения изучаемых признаков, их дисперсии и средние квадратические отклонения, мода и медиана и др.

Исследователя могут интересовать и распределения единиц по изучаемым признакам в генеральной и выборочной совокупностях. В этом случае частоты называются соответственно генеральными и выборочными.

Система правил отбора и способов характеристики единиц изучаемой совокупности составляет содержание выборочного метода. Суть выборочного метода состоит в получении первичных данных, осуществляемых наблюдением выборки с последующим обобщением, анализом и их распространением на всю генеральную совокупность с целью получения достоверной информации об исследуемом явлении.

Репрезентативность выборки обеспечивается соблюдением принципа случайности отбора объектов совокупности в выборку. Если совокупность является качественно однородной, то принцип случайности реализуется простым случайным отбором объектов выборки. Простым случайным отбором называют такую процедуру образования выборки, которая обеспечивает одинаковую вероятность для каждой единицы совокупности быть выбранной для наблюдения, для любой выборки заданного объема.

Итак, цель выборочного метода - сделать вывод о значении признаков генеральной совокупности на основе информации от случайной выборки из этой совокупности.

2. Ошибки выборочного наблюдения

Между признаками выборочной совокупности и признаками генеральной совокупности, как правило, существует некоторое расхождение, которое называют ошибкой статистического наблюдения. При массовом наблюдении ошибки неизбежны, но возникают они в результате действия различных причин. Величина возможной ошибки выборочного признака слагается из ошибок регистрации и ошибок репрезентативности. Ошибки регистрации, или технические ошибки, связаны с недостаточной квалификацией наблюдателей, неточностью подсчетов, несовершенством приборов и т. п.

Под ошибкой репрезентативности (представительства) понимают расхождение между выборочной характеристикой и предполагаемой характеристикой генеральной совокупности. Ошибки репрезентативности бывают случайными и систематическими.

Систематические ошибки связаны с нарушением установленных правил отбора. Случайные ошибки объясняются недостаточно равномерным представлением в выборочной совокупности различных категорий единиц генеральной совокупности. В результате первой причины выборка легко может оказаться смещенной, так как при отборе каждой единицы допускается ошибка, всегда направленная в одну и ту же сторону. Эта ошибка получила название ошибки смещения. Ее размер может превышать величину случайной ошибки. Особенность ошибки смещения состоит в том, что, представляя собой постоянную часть ошибки репрезентативности, она увеличивается с увеличением объема выборки. Случайная же ошибка с увеличением объема выборки уменьшается. Кроме того, величину случайной ошибки можно определить, тогда как размер ошибки смещения непосредственно практически определить очень сложно, а иногда и невозможно. Поэтому важно знать причины, вызывающие ошибку смещения, и предусмотреть мероприятия по ее устранению.

Ошибки смещения бывают преднамеренными и непреднамеренными. Причиной возникновения преднамеренной ошибки является тенденциозный подход к выбору единиц из генеральной совокупности. Чтобы не допустить появления такой ошибки, необходимо соблюдать принцип случайности отбора единиц.

Непреднамеренные ошибки могут возникать на стадии подготовки выборочного наблюдения, формирования выборочной совокупности и анализа ее данных. Чтобы не допустить появления таких ошибок, необходима хорошая основа выборки, т. е. та генеральная совокупность, из которой предполагается производить отбор, например список единиц отбора. Основа выборки должна быть достоверной, полной и соответствовать цели исследования, а единицы отбора и их характеристики должны соответствовать действительному их состоянию на момент подготовки выборочного наблюдения. Нередки случаи, когда в отношении некоторых единиц, попавших в выборку, трудно собрать сведения из-за их отсутствия на момент наблюдения, нежелания дать сведения и т. п. В таких случаях эти единицы приходится заменять другими. Необходимо следить, чтобы замена осуществлялась равноценными единицами.

Случайная ошибка выборки возникает в результате случайных различий между единицами, попавшими в выборку, и единицами генеральной совокупности, т. е. она связана со случайным отбором. Теоретическим обоснованием появления случайных ошибок выборки являются теория вероятностей и ее предельные теоремы.

Сущность предельных теорем состоит в том, что в массовых явлениях совокупное влияние различных случайных причин на формирование закономерностей и обобщающих характеристик будет сколь угодно малой величиной или практически не зависит от случая. Так как случайная ошибка выборки возникает в результате случайных различий между единицами выборочной и генеральной совокупностей, то при достаточно большом объеме выборки она будет сколь угодно мала.

Предельные теоремы теории вероятностей позволяют определять размер случайных ошибок выборки. Различают среднюю (стандартную) и предельную ошибку выборки. Под средней (стандартной) ошибкой выборки понимают расхождение между средней выборочной и генеральной совокупностей.

Предельной ошибкой выборки принято считать максимально возможное расхождение, т. е. максимум ошибки при заданной вероятности ее появления.

В математической теории выборочного метода сравниваются средние характеристики признаков выборочной и генеральной совокупностей и доказывается, что с увеличением объема выборки вероятность появления больших ошибок и пределы максимально возможной ошибки уменьшаются. Чем больше обследуется единиц, тем меньше будет величина расхождений выборочных и генеральных характеристик. На основании теоремы, доказанной П. Л. Чебышевым, величину стандартной ошибки простой случайной выборки при достаточно большом объеме выборки (n) можно определить по формуле:

где µx- стандартная ошибка.

Из этой формулы средней (стандартной) ошибки простой случайной выборки видно, что величина µx зависит от изменчивости признака в генеральной совокупности (чем больше вариация признака, тем больше ошибка выборки) и от объема выборки n чем больше обследуется единиц, тем меньше будет величина расхождений выборочных и генеральных характеристик).

Академик А. М. Ляпунов доказал, что вероятность появления случайной ошибки выборки при достаточно большом ее объеме подчиняется закону нормального распределения. Эта вероятность определяется по формуле:

В математической статистике употребляют коэффициент доверия t, и значения функции F(t) табулированы при разных его значениях, при этом получают соответствующие уровни доверительной вероятности.

Коэффициент доверия позволяет вычислить предельную ошибку выборки, вычисляемую по формуле:

Из формулы вытекает, что предельная ошибка выборки равна -кратному числу средних ошибок выборки.

Таким образом, величина предельной ошибки выборки может быть установлена с определенной вероятностью.

Выборочное наблюдение дает возможность определить среднюю арифметическую выборочной совокупности x и величину предельной ошибки этой средней x, которая показывает с определенной вероятностью), насколько выборочная может отличаться от генеральной средней в большую или меньшую сторону. Тогда величина генеральной средней будет представлена интервальной оценкой, для которой нижняя граница будет равна

Интервал, в который с данной степенью вероятности будет заключена неизвестная величина оцениваемого параметра, называют доверительным, а вероятность Р - доверительной вероятностью. Чаще всего доверительную вероятность принимают равной 0,95 или 0,99, тогда коэффициент доверия t равен соответственно 1,96 и 2,58. Это означает, что доверительный интервал с заданной вероятностью заключает в себе генеральную среднюю.

Наряду с абсолютной величиной предельной ошибки выборки рассчитывается и относительная ошибка выборки, которая определяется как процентное отношение предельной ошибки выборки к соответствующей характеристике выборочной совокупности:

Чем больше величина предельной ошибки выборки, тем больше величина доверительного интервала и тем, следовательно, ниже точность оценки. Средняя (стандартная) ошибка выборки зависит от объема выборки и степени вариации признака в генеральной совокупности.

3. Определение необходимой численности выборки

Одним из научных принципов в теории выборочного метода является обеспечение достаточного числа отобранных единиц. Теоретически необходимость соблюдения этого принципа представлена в доказательствах предельных теорем теории вероятностей, которые позволяют установить, какой объем единиц следует выбрать из генеральной совокупности, чтобы он был достаточным и обеспечивал репрезентативность выборки.

Уменьшение стандартной ошибки выборки (а следовательно, увеличение точности оценки) всегда связано с увеличением объема выборки. Поэтому уже на стадии организации выборочного наблюдения приходится решать вопрос о том, каков должен быть объем выборочной совокупности, чтобы была обеспечена требуемая точность результатов наблюдений. Расчет необходимого объема выборки строится с помощью формул, выведенных из формул предельных ошибок выборки (∆), соответствующих тому или иному виду и способу отбора. Так, для случайного повторного объема выборки (n) имеем:

Смысл этой формулы в том, что при случайном повторном отборе необходимой численности объем выборки прямо пропорционален квадрату коэффициента доверия (t2) и дисперсии вариационного признака (σ2) и обратно пропорционален квадрату предельной ошибки выборки (∆2). В частности, с увеличением предельной ошибки в 2 раза необходимая численность выборки может быть уменьшена в 4 раза. Из трех параметров два (t и ∆) задаются исследователем. При этом исследователь исходя из цели и задач выборочного обследования должен решить вопрос, в каком количественном сочетании лучше включить эти параметры для обеспечения оптимального варианта. В одном случае его может устраивать в большей мере надежность полученных результатов (t), нежели мера точности (∆), в другом - наоборот. Сложнее решить вопрос в отношении величины предельной ошибки выборки, так как этим показателем исследователь на стадии проектировки выборочного наблюдения не располагает. Поэтому в практике принято задавать величину предельной ошибки выборки, как правило, в пределах до 10% предполагаемого среднего уровня признака. К установлению предполагаемого среднего уровня можно подходить по-разному: использовать данные подобных ранее проведенных обследований или же воспользоваться данными основы выборки и произвести небольшую пробную выборку.

Вопрос об определении необходимой численности выборки усложняется, если выборочное обследование предполагает изучение нескольких признаков единиц отбора. В этом случае средние уровни каждого из признаков и их вариация, как правило, различны, и поэтому решить вопрос о том, дисперсии какого из признаков отдать предпочтение, возможно лишь с учетом цели и задач обследования.

При проектировании выборочного наблюдения предполагаются заранее заданной величина допустимой ошибки выборки в соответствии с задачами конкретного исследования и вероятность выводов по результатам наблюдения.

В целом формула предельной ошибки выборочной средней позволяет решать следующие задачи:

1) определять величину возможных отклонений показателей генеральной совокупности от показателей выборочной совокупности;

2) определять необходимую численность выборки, обеспечивающую требуемую точность, при которой пределы возможной ошибки не превысят некоторой, наперед заданной величины;

3) определять вероятность того, что в проведенной выборке ошибка будет иметь заданный предел.

4. Способы отбора и виды выборки

В теории выборочного метода разработаны различные способы отбора и виды выборки, обеспечивающие репрезентативность. Под способом отбора понимают порядок отбора единиц из генеральной совокупности. Различают два способа отбора: повторный и бесповторный. При повторном отборе каждая отобранная в случайном порядке единица после ее обследования возвращается в генеральную совокупность и при последующем отборе может снова попасть в выборку. Этот способ отбора построен по схеме "возвращенного шара". При таком способе отбора вероятность попасть в выборку для каждой единицы генеральной совокупности не меняется независимо от числа отбираемых единиц. При бесповторном отборе каждая единица, отобранная в случайном порядке, после ее обследования в генеральную совокупность не возвращается. Этот способ отбора построен по схеме "невозвращенного шара". Вероятность попасть в выборку для каждой единицы генеральной совокупности увеличивается по мере производства отбора.

В зависимости от методики формирования выборочной совокупности различают следующие основные виды выборки: собственно случайную, механическую, типическую (стратифицированную, районированную), серийную (гнездовую), комбинированную, многоступенчатую, многофазную, взаимопроникающую.

Собственно случайная выборка формируется в строгом соответствии с научными принципами и правилами случайного отбора. Для получения собственно-случайной выборки генеральная совокупность строго подразделяется на единицы отбора, и затем в случайном повторном или бесповторном порядке отбирается достаточное число единиц. Случайный порядок - это порядок, равносильный жеребьевке. На практике такой порядок лучшим образом обеспечивается при использовании специальных таблиц случайных чисел. Если, например, из совокупности, содержащей 1587 единиц, следует отобрать 40 единиц, то из таблицы отбирают 40 четырехзначных чисел, которые меньше 1587.

При бесповторном способе отбора расчета стандартной ошибки осуществляется с помощью формулы:

- доля единиц генеральной совокупности, не попавших в выборку.

Так как эта доля всегда меньше единицы, то ошибка при бесповторном отборе при прочих равных условиях всегда меньше, чем при повторном. Бесповторный отбор практически организовать всегда легче, чем повторный, и он применяется чаще.

Формировать выборку в строгом соответствии с правилами случайного отбора практически очень сложно, а иногда невозможно, так как при использовании таблиц случайных чисел необходимо пронумеровать все единицы генеральной совокупности. Довольно часто генеральная совокупность такая большая, что провести подобную предварительную работу чрезвычайно сложно и нецелесообразно. Поэтому на практике применяют другие виды выборок, каждая из которых не является строго случайной. Однако организуются они так, чтобы было обеспечено максимальное приближение к условиям случайного отбора.

При чисто механической выборке вся генеральная совокупность единиц должна быть прежде всего представлена в виде списка единиц отбора, составленного в каком-то нейтральном по отношению к изучаемому признаку порядке, например по алфавиту. Затем список единиц отбора разбивается на столько равных частей, сколько необходимо отобрать единиц. Далее по заранее установленному правилу, не связанному с вариацией исследуемого признака, из каждой части списка отбирается одна единица. Этот вид выборки не всегда может обеспечить случайный характер отбора, и полученная выборка может оказаться смещенной. Объясняется это тем, что, во-первых, упорядочение единиц генеральной совокупности может иметь элемент неслучайного характера. Во-вторых, отбор из каждой части генеральной совокупности при неправильном установлении начала отсчета может также привести к ошибке смещения. Однако практически легче организовать механическую выборку, чем собственно случайную, и при проведении выборочных обследований чаще всего пользуются этим видом выборки. Типическая (районированная, стратифицированная) выборка преследует две цели:

1) обеспечить представительство в выборке соответствующих типических групп генеральной совокупности по интересующим исследователя признакам;

2) увеличить точность результатов выборочного обследования.

При типической выборке до начала ее формирования генеральная совокупность единиц разбивается на типические группы. При этом очень важным моментом является правильный выбор группировочного признака. Выделенные типические группы могут содержать одинаковое или различное число единиц отбора. В первом случае выборочная совокупность формируется с одинаковой долей отбора из каждой группы, во втором - с долей, пропорциональной ее доле в генеральной совокупности. Если выборка формируется с равной долей отбора, по существу, она равносильна ряду собственно-случайных выборок из меньших генеральных совокупностей, каждая из которых и есть типическая группа. Отбор из каждой группы осуществляется в случайном (повторном или бесповторном) либо механическом порядке. При типической выборке, (как с равной, так и неравной долей отбора), удается устранить влияние межгрупповой вариации изучаемого признака на точность ее результатов, так как обеспечивается обязательное представительство в выборочной совокупности каждой из типических групп. Стандартная ошибка выборки будет зависеть не от величины общей дисперсии - σ2, а от величины средней из групповых дисперсий σi2.

Поскольку средняя из групповых дисперсий всегда меньше общей дисперсии, постольку при прочих равных условиях стандартная ошибка типической выборки будет меньше стандартной ошибки собственно-случайной выборки.

При определении стандартных ошибок типической выборки применяются следующие формулы:

1) при повторном способе отбора:

2) при бесповторном способе отбора:

где σв2- средняя из групповых дисперсий в выборочной совокупности.

Серийная (гнездовая) выборка - это такой вид формирования выборочной совокупности, когда в случайном порядке отбираются не единицы, подлежащие обследованию, а группы единиц (серии, гнезда). Внутри отобранных серий (гнезд) обследованию подвергаются все единицы. Серийную выборку практически организовать и провести легче, чем отбор отдельных единиц. Однако при этом виде выборки, во-первых, не обеспечивается представительство каждой из серий, и, во-вторых, не устраняется влияние межсерийной вариации изучаемого признака на результаты обследования. В том случае, когда эта вариация значительна, она приведет к увеличению случайной ошибки репрезентативности. При выборе вида выборки исследователю необходимо учитывать это обстоятельство.

Стандартная ошибка серийной выборки определяется по формулам:

1) при повторном способе отбора:

где σв2- межсерийная дисперсия выборочной совокупности;

г - число отобранных серий;

2) при бесповторном способе отбора:

где R - число серий в генеральной совокупности.

В практике те или иные способы и виды выборок применяются в зависимости от цели и задач выборочных обследований, а также возможностей их организации и проведения. Чаще всего применяется комбинирование способов отбора и видов выборки. Такие выборки получили название комбинированных. Комбинирование возможно в разных сочетаниях: механической и серийной выборки, типической и механической, серийной и собственно-случайной и т. д. К комбинированной выборке прибегают с целью обеспечить наибольшую репрезентативность с наименьшими трудовыми и денежными затратами на организацию и проведение обследования.

При комбинированной выборке величина стандартной ошибки выборки состоит из ошибок на каждой ее ступени и может быть определена как корень квадратный из суммы квадратов ошибок соответствующих выборок. Так, если при комбинированной выборке в сочетании использовались механическая и типическая выборки, то стандартную ошибку можно определить по формуле:

где μ1 и μ2- стандартные ошибки соответственно механической и типической выборок.

Особенность многоступенчатой выборки состоит в том, что выборочная совокупность формируется постепенно, по ступеням отбора. На первой ступени с помощью заранее определенного способа и вида отбора отбираются единицы первой ступени. На второй ступени из каждой единицы первой ступени, попавшей в выборку, отбираются единицы второй ступени и т. д. Число ступеней может быть и больше двух. На последней ступени формируется выборочная совокупность, единицы которой подлежат обследованию. Так, например, для выборочного обследования бюджетов домашних хозяйств на первой ступени отбираются территориальные субъекты страны, на второй - районы в отобранных регионах, на третьей в каждом муниципальном образовании отбираются предприятия или организации и, наконец, на четвертой ступени в отобранных предприятиях отбираются семьи.

Таким образом, выборочная совокупность формируется на последней ступени. Многоступенчатая выборка более гибкая, чем другие виды, хотя в общем она дает менее точные результаты, чем выборка того же объема, но сформированная в одну ступень. Однако при этом она имеет одно важное преимущество, которое заключается в том, что основу выборки при многоступенчатом отборе нужно строить на каждой из ступеней только для тех единиц, которые попали в выборку, а это очень важно, так как нередко готовой основы выборки нет.

Стандартную ошибку выборки при многоступенчатом отборе при группах разных объемов определяют по формуле:

где μ1, μ2, μ3,... - стандартные ошибки на разных ступенях;

n1, n2, n3,... - численность выборок на соответствующих ступенях отбора.

В том случае, если группы неодинаковы по объему, теоретически этой формулой пользоваться нельзя. Но если общая доля отбора на всех ступенях постоянна, то практически расчет по этой формуле не приведет к искажению величины ошибки.

Сущность многофазной выборки состоит в том, что на основе первоначально сформированной выборочной совокупности образуют подвыборку, из этой подвыборки - следующую подвыборку и т. д. Первоначальная выборочная совокупность представляет собой первую фазу, подвыборка из нее - вторую и т. д. Многофазную выборку целесообразно применять в нескольких случаях:

1) если для изучения различных признаков требуется неодинаковый объем выборки;

2) если колеблемость изучаемых признаков неодинакова и требуемая точность различна;

3) если в отношении всех единиц первоначальной выборочной совокупности (первая фаза) необходимо собрать одни - менее подробные сведения, а в отношении единиц каждой последующей фазы другие - более подробные. Одним из несомненных достоинств многофазной выборки является то обстоятельство, что сведениями, полученными на первой фазе, можно пользоваться как дополнительной информацией на последующих фазах, информацией второй фазы - как дополнительной информацией на следующих фазах и т. д. Такое использование сведений повышает точность результатов выборочного обследования.

При организации многофазной выборки можно применять сочетание различных способов и видов отбора (типическую выборку с механической и т. д.). Многофазный отбор можно сочетать с многоступенчатым. На каждой ступени выборка может быть многофазной.

Стандартная ошибка при многофазной выборке рассчитывается на каждой фазе в отдельности в соответствии с формулами того способа отбора и вида выборки, при помощи которых формировалась ее выборочная совокупность.

Взаимопроникающие выборки - это две или более независимые выборки из одной и той же генеральной совокупности, образованные одним и тем же способом и видом. К взаимопроникающим выборкам целесообразно прибегать, если необходимо за короткий срок получить предварительные итоги выборочных обследований. Взаимопроникающие выборки эффективны для оценки результатов обследования. Если в независимых выборках результаты одинаковы, то это свидетельствует о надежности данных выборочного обследования. Взаимопроникающие выборки иногда можно применять для проверки работы различных исследователей, поручив каждому из них провести обследование разных выборок.

Стандартная ошибка при взаимопроникающих выборках определяется так же, как при типической пропорциональной выборке. Взаимопроникающие выборки по сравнению с другими видами требуют больших трудовых затрат и денежных расходов, поэтому исследователь должен учитывать это обстоятельство при проектировании выборочного обследования.

Предельные ошибки при различных способах отбора и видах выборки определяются по формуле:

Δ = tμ,

где μ- соответствующая стандартная ошибка.

Автор: Коник Н.В.

<< Назад: Средние величины и показатели вариации (Средние величины и общие принципы их исчисления. Виды средних величин. Показатели вариации)

>> Вперед: Индексный анализ (Общее понятие об индексах и индексном методе. Агрегатные индексы качественных показателей. Агрегатные индексы объемных показателей. Ряды агрегатных индексов с постоянными и переменными весами. Построение сводных территориальных индексов. Средние индексы)

Рекомендуем интересные статьи раздела Конспекты лекций, шпаргалки:

История экономики. Шпаргалка

Теория государства и права. Шпаргалка

История психологии. Конспект лекций

Смотрите другие статьи раздела Конспекты лекций, шпаргалки.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Питомцы как стимулятор разума 06.10.2025

Помимо эмоциональной поддержки, домашние питомцы могут оказывать заметное воздействие на когнитивные процессы, особенно у пожилых людей. Новое масштабное исследование показало, что общение с кошками и собаками не просто улучшает настроение - оно действительно способствует замедлению возрастного снижения умственных способностей. Работа проводилась в рамках проекта Survey of Health, Ageing and Retirement in Europe (SHARE), охватывающего период с 2004 по 2022 год. В исследовании приняли участие тысячи европейцев старше 50 лет. Анализ показал, что владельцы домашних животных демонстрируют более устойчивые когнитивные функции по сравнению с теми, кто не держит питомцев. Особенно выражен эффект оказался у владельцев кошек и собак. Согласно данным ученых, владельцы собак дольше сохраняют хорошую память, в то время как хозяева кошек медленнее теряют способность к быстрому речевому взаимодействию. Исследователи связывают это с тем, что ежедневное взаимодействие с животными требует внимани ...>>

Мини-ПК ExpertCenter PN54-S1 06.10.2025

Компания ASUSTeK Computer презентовала новый мини-компьютер ASUS ExpertCenter PN54-S1. Устройство ориентировано на пользователей, которым важно сочетание производительности, энергоэффективности и универсальности - от офисных задач до мультимедийных проектов. В основе ExpertCenter PN54-S1 лежит современная аппаратная платформа AMD Hawk Point, использующая архитектуру Zen 4. Это поколение чипов отличается улучшенным управлением энергопотреблением и повышенной вычислительной мощностью. Новинка доступна в конфигурациях с процессорами Ryzen 7260, Ryzen 5220 и Ryzen 5210, представленных AMD в начале 2025 года. Таким образом, устройство охватывает широкий диапазон задач - от базовых офисных до ресурсоемких вычислений. Корпус мини-ПК выполнен из прочного алюминия и имеет размеры 130&#215;130&#215;34 мм, что делает его практически незаметным на рабочем столе или за монитором. Несмотря на компактность, внутренняя компоновка позволяет установить два модуля оперативной памяти SO-DIMM ...>>

Глазные капли, возвращающие молодость зрению 05.10.2025

С возрастом человеческий глаз постепенно теряет способность четко видеть на близком расстоянии - развивается пресбиопия, или возрастная дальнозоркость. Этот естественный процесс связан с утратой эластичности хрусталика и ослаблением цилиарной мышцы, отвечающей за фокусировку. Миллионы людей по всему миру сталкиваются с необходимостью носить очки для чтения или прибегают к хирургическим методам коррекции. Однако исследователи из Центра передовых исследований пресбиопии в Буэнос-Айресе представили решение, которое может стать удобной и неинвазивной альтернативой - специальные глазные капли, способные улучшать зрение на длительный срок. Разработку возглавила Джованна Беноцци, директор Центра. По ее словам, цель исследования состояла в том, чтобы предоставить пациентам с пресбиопией эффективный и безопасный способ коррекции зрения без хирургического вмешательства. Новые капли, созданные на основе пилокарпина и диклофенака, показали убедительные результаты: уже через час после первого пр ...>>

Случайная новость из Архива

TCB010FNG - ИС управления электропитанием для автомобильных АС 13.06.2017

Компания Toshiba Electronics Europe (TEE) объявила о выпуске новой ИС системного регулятора, предназначенной для удовлетворения растущих требований к электропитанию автомобильных аудиосистем. TCB010FNG представляет собой полнофункциональное решение, объединяющее необходимый источник питания и все основные функции обнаружения неполадок и диагностики, сообщили CNews в Toshiba.

TCB010FNG содержит многолинейный источник питания микроконтроллера, сохраняющий подачу питания при небольших перебоях в питании от аккумулятора. Для большей гибкости устройство также включает в себя несколько регулируемых источников питания и источник питания фиксированного напряжения.

В дополнение к 2-канальному переключателю верхнего плеча ИС также содержит ряд функций мониторинга, в том числе контроль напряжения аккумулятора, напряжения питания вспомогательных устройств и выходного напряжения питания микроконтроллера, для каждого из которых можно установить пороговое значение.

Поскольку ИС использует регуляторы с последовательным включением, пользователи могут создавать устройства, не беспокоясь об электромагнитных помехах, подчеркнули в Toshiba.

TCB010FNG выпускается в корпусе P-HSSOP36-1116-0.65. Поставки ознакомительных образцов начинаются сейчас, а начало серийного производства запланировано на июнь текущего года.

Другие интересные новости:

▪ Камера с постфокусировкой Lytro Illum

▪ Электростанция на воздушном змее

▪ Имплантат против судорог

▪ Новая технология увеличит запас хода электромобилей

▪ Молекулярные ножницы удалят вирус СПИДа

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Сварочное оборудование. Подборка статей

▪ статья Половое воспитание. Основы безопасной жизнедеятельности

▪ статья При каких условиях возникает перевернутая радуга? Подробный ответ

▪ статья Секстант. Советы туристу

▪ статья Пускозащитное устройство для галогенных ламп на микроконтроллере Z8. Энциклопедия радиоэлектроники и электротехники

▪ статья Цветы и голуби. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025