Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Автопилот. История изобретения и производства

История техники, технологии, предметов вокруг нас

Справочник / История техники, технологии, предметов вокруг нас

Комментарии к статье Комментарии к статье

Автопилот представляет собой совокупность нескольких устройств, совместная работа которых дает возможность автоматически, без участия человека, управлять движением самолета или ракеты. Создание автопилота составило важную эпоху в истории авиации, так как сделало воздушные полеты гораздо более безопасными. Что же касается ракетной техники, где все полеты осуществляются в беспилотном режиме, то без надежных автоматических систем управления эта техника вообще не могла бы развиваться.

Автопилот
Пульт управления вертолетного автопилота АП-34

Главная идея автоматического пилотирования заключается в том, что автопилот строго поддерживает правильную ориентацию перемещающегося в пространстве аппарата. Благодаря этому аппарат, во-первых, удерживается в воздухе и не падает, а во-вторых, не сбивается с заданного курса, поскольку от правильной ориентации прежде всего и зависит траектория его полета. В свою очередь, ориентация аппарата в пространстве определяется тремя углами.

Во-первых, это угол тангажа, то есть угол между продольной осью аппарата и плоскостью земли (или, как говорят, плоскостью горизонта). Отслеживание этого угла позволяет самолету сохранять продольную устойчивость - не "клевать носом", а ракете, совершающей полет по баллистической траектории, - точнее поразить цель.

Во-вторых, это угол рысканья, то есть угол между продольной осью аппарата и плоскостью полета (так мы назовем плоскость, перпендикулярную плоскости горизонта и проходящую через точку старта и точку цели). Угол рысканья указывает на отклонение аппарата от заданного курса.

И, в-третьих, это углом крена, то есть угол, который возникает при повороте корпуса аппарата вокруг его продольной оси. Своевременное исправление крена позволяет самолету сохранять поперечную устойчивость и гасит беспорядочное вращение ракеты. Автоматическое управление аппаратом было бы невозможно, если бы не существовало надежного и простого способа определения этих углов. К счастью, такой способ есть, и он основан на свойстве быстро вращающегося гироскопа сохранять неизменным в пространстве положение своей оси.

Простейшим гироскопом является детский волчок, быстро вращающийся вокруг своей оси. Попробуйте повалить его щелчком, и вы увидите, что это невозможно - волчок лишь отскочит в сторону и будет продолжать вращение.

Автопилот
Волчок

Однако ось OA волчка не имеет постоянной ориентации, поскольку ее конец A не закреплен. Гироскопы, применяемые в технике, имеют намного более сложное устройство: ротор (собственно волчок) закрепляется здесь в рамках (кольцах) 1 и 2 так называемого карданова подвеса, что дает возможность оси AB занять любое положение в пространстве.

Такой гироскоп может совершать три независимых поворота вокруг осей AB, DE и GK, пересекающихся в центре подвеса O, который остается неподвижным относительно основания.

Главное свойство быстро вращающегося гироскопа, как уже было сказано, состоит в том, что его ось стремится устойчиво сохранять в мировом пространстве приданное ей первоначальное направление. Например, если эта ось была изначально направлена на какую-то звезду, то при любых перемещениях самого прибора и случайных толчках она будет продолжать указывать на эту звезду даже тогда, когда ее ориентация относительно земных осей изменится. Впервые это свойство использовал в 1852 году французский физик Фуко для экспериментального доказательства вращения Земли вокруг ее оси. Отсюда и само название "гироскоп", что в переводе с греческого означает "наблюдать вращение".

Автопилот
Гироскоп в кардановом подвесе. Ротор С, кроме вращения вокругоси АВ, может вместе с рамкой 1 поворачиваться вокруг оси DE и вместе с рамкой 2 - вокруг оси СК; следовательно, ось ротора может занимать любое положение в пространстве. О - центр подвеса, совпадающий с центром тяжести гироскопа

Второе важное свойство гироскопа обнаруживается, когда на его ось (или рамку) начинает действовать какая-то внешняя сила, стремящаяся повернуть ее относительно центра подвеса. Например, если сила P будет действовать на конец оси AB, то гироскоп, вместо того чтобы отклониться в сторону действия силы (как это было бы в том случае, если бы ротор не вращался), будет наклоняться в направлении, строго перпендикулярном действию силы, то есть (в нашем случае) начнет вращаться вокруг оси DE, причем с постоянной скоростью. Это вращение называется прецессией гироскопа, и оно будет тем медленнее, чем быстрее вращается вокруг оси AB сам гироскоп. Если в какой-то момент действие внешней силы прекращается, то одновременно прекращается и прецессия, и ось AB мгновенно останавливается.

Автопилот
Действие силы Р на гироскоп с вращающимся ротором; ось АВ при этом движется перпендикулярно направлению Р

Прецессию можно наблюдать и у такого простого гироскопа, каким является детский волчок, у которого роль центра подвеса играет точка опоры. Если волчок раскрутить таким образом, что ось его будет не перпендикулярна полу, а наклонена к нему под каким-то углом, то можно увидеть, что ось такого волчка отклоняется не в сторону действия силы тяжести (то есть вниз), а в перпендикулярном направлении, то есть ось начинает вращаться вокруг перпендикуляра к полу, опущенного в точку опоры.

На этих двух свойствах гироскопа основано несколько приборов, использующихся в автопилоте. В 70-х годах XIX века гироскопы начали применять в военном деле в автоматах курса морских торпед. В момент пуска торпеды ротор установленного на ней гироскопа раскручивался до скорости в несколько тысяч оборотов в минуту. После этого его ось была все время направлена на цель.

Автопилот
Прецессия волчка под действием силы тяжести

К оси гироскопа прикреплялся эксцентрик - диск, центр которого был сдвинут от оси вертикального кольца автомата. Эксцентрик упирался в шток золотника: когда торпеда шла точно на цель, поршеньки золотника закрывали отверстия трубопроводов 1 и 2, и поршень рулевой машины оставался неподвижным. Если же торпеда по какой-то причине отклонялась от курса, то эксцентрик, связанный с гироскопом, оставался неподвижен, а шток золотника под действием пружины соскальзывал влево или вправо и открывал отверстие, через которое сжатый воздух по трубопроводу 1 или 2 поступал в рулевую машину. Под действием сжатого воздуха поршень рулевой машины приходил в движение и перекладывал руль, так что торпеда возвращалась на правильный курс.

Автопилот
Автомат курса торпеды (нажмите для увеличения)

Затем гироскопы нашли широкое применение в авиации. В главе, посвященной аэроплану, уже говорилось о том, какой важной проблемой для первых авиаторов было сохранение в полете правильной ориентации самолетов. Многие конструкторы думали тогда над созданием автоматических стабилизаторов. В 1911 году американский летчик Сперри разработал первый автоматический стабилизатор с массивным гироскопом. Впервые самолет с таким стабилизатором поднялся в воздух в 1914 году. А в начале 20-х годов фирма Сперри создала уже настоящий автопилот. Первые автопилоты управляли только рулями и следили за сохранением заданного режима полета. Дальнейшее их развитие привело к появлению систем, автоматизирующих управление как рулями, так и двигателями летательного аппарата. Подобные автопилоты уже допускали полеты без экипажа и управление летательным аппаратом на расстоянии. Они нашли применение в первых ракетах.

Раньше других с проблемой автоматического управления ракетой столкнулись немецкие конструкторы - создатели первой в истории баллистической ракеты "Фау-2". Автомат стабилизации "Фау-2" состоял из гироскопических приборов "Горизонт" и "Вертикант".

Автопилот
"Горизонт"

"Горизонт" позволял определить плоскость горизонта и угол наклона (угол тангажа) ракеты относительно этой плоскости. Ротор 1 гироскопа был в то же время якорем асинхронного электродвигателя, обмотка 2 которого питалась переменным током. Перед стартом ракеты "Горизонт" располагали таким образом, чтобы ось вращения ротора была параллельна линии горизонта. Для этой цели в состав системы управления входил маятник (отвес) 5, фиксировавший отклонение оси гироскопа. Если эта ось отклонялась вверх или вниз от горизонтального направления, маятник также отклонялся в сторону и замыкал контакт с одной или с другой стороны. При этом на электромагнит 6 поступал сигнал той или иной полярности. Электромагнит начинал действовать на ось гироскопа вдоль оси игрек вверх или вниз от центра вращения. Вследствие этого возникала прецессия, разворачивающая гироскоп перпендикулярно отклоняющей силе. Прецессия продолжалась до тех пор, пока ось ротора не возвращалась в горизонтальное положение. Как только это происходило, контакт маятника 5 размыкался и прецессия мгновенно прекращалась. Перед стартом корректирующее устройство отключалось.

Отклонение ракеты от заданного угла тангажа фиксировалось с помощью потенциометра - простого по своему устройству датчика с переменным сопротивлением. Он представлял собой кольцеобразный каркас, на который наматывалась проволока. По этому каркасу скользила щетка-контакт. Если щетка находилась в начале каркаса, в цепь включалось меньшее число витков проволоки, соответственно сопротивление потенциометра при этом было меньше и напряжение на выходе тоже оказывалось незначительным (как известно, падение напряжения U определяется законом Ома U=I•R, где I - сила тока, R - сопротивление). Если щетка передвигалась в конец каркаса, сопротивление потенциометра возрастало, и, следовательно, увеличивалось напряжение на выходе. Щетка была связана с чувствительным устройством, которое отмечало малейшие изменения напряжения.

Если во время полета угол между продольной осью аппарата и плоскостью горизонта по каким-то причинам начинал отклоняться от заданного, то потенциометр 8, связанный с корпусом аппарата, поворачивался вместе с ним относительно неподвижного в пространстве гироскопа и соединенной с ним контактной щетки. При этом на выходе потенциометра появлялся электрический сигнал, пропорциональный по величине углу отклонения. Этот сигнал усиливался и поступал на горизонтальные рули рулевой машины, которые выравнивали ракету. Такое простое устройство, впрочем, могло эффективно работать только при сравнительно незначительном времени полета. Во время длительного полета следовало учитывать вращение Земли, поэтому в этом случае в направление оси гироскопа приходилось вносить коррекцию.

"Горизонт" позволял не только сохранять, но и изменять угол тангажа в соответствии с заданной программой. Из описанной схемы видно, что если в установленный момент потенциометр 8 повернуть на какой-то заданный угол, то рули сработают так, словно на тот же угол отклонился сам аппарат. Следовательно, поворачивая потенциометр, можно вызвать поворот ракеты. "Горизонт" включал в себя очень простой программный механизм, состоящий из металлической ленты 10, эксцентрика 11, шагового мотора 12 и храпового колеса 13. Эксцентрик имел профиль поверхности, соответствующий заданной программе. Шаговый мотор приводил его в движение через червячную передачу (шаговый мотор представлял собой электромагнит с якорем, когда на электромагнит подавался импульс, якорь притягивался к магниту и своим ребром сдвигал храповое колесо на один зуб). Таким образом, скорость вращения храпового колеса зависела от частоты импульсов, подаваемых на электромагнит. Стопор 14 представлял собой защелку, не допускавшую поворот храпового колеса в обратном направлении.

Автопилот
"Вертикант"

Идентично с "Горизонтом" работал "Вертикант". Перед стартом ракеты ось ротора гироскопа располагалась перпендикулярно к намеченной плоскости полета, поэтому гироскоп оказывался нечувствителен к эволюциям ракеты по тангажу, но реагировал на повороты по крену и курсу. Коррекция гироскопа была такой же, как у "Горизонта", и осуществлялась до старта с помощью маятника 3 и электромагнита 4. После взлета потенциометр 5 реагировал на рысканье ракеты и передавал сигналы на рули. Так как ось, направленная на цель, совпадала с продольной осью ракеты, то при возникновении крена потенциометр 7 в полете перемещался относительно неподвижного движка (щетки), связанной с гироскопом. Сигнал передавался на рули, которые исправляли крен.

Автор: Рыжов К.В.

 Рекомендуем интересные статьи раздела История техники, технологии, предметов вокруг нас:

▪ Ускоритель заряженных частиц

▪ Персональный компьютер

▪ Спиртные напитки

Смотрите другие статьи раздела История техники, технологии, предметов вокруг нас.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Токсичность интернета преувеличена 07.01.2026

Социальные сети нередко воспринимаются как арена постоянной агрессии, оскорблений и распространения фейковой информации. Новое исследование Стэнфордского университета показывает, что реальность значительно отличается от популярного представления: интернет гораздо менее токсичен, чем многие пользователи считают. Ученые опросили более тысячи американцев, попросив их оценить долю пользователей соцсетей, которые ведут себя агрессивно или распространяют ненависть. Оказалось, что впечатления людей сильно преувеличивают масштабы проблемы. Например, респонденты считали, что почти половина пользователей Reddit хотя бы раз оставляла оскорбительные комментарии, тогда как фактические данные платформы показывают, что таких людей не более 3%. Аналогичная ситуация наблюдается с дезинформацией. Опрос показал, что большинство участников считали почти половину аудитории Facebook распространителями фейковых новостей, однако статистика говорит об обратном: фактическая доля таких пользователей состав ...>>

Процессоры Ryzen AI 400 07.01.2026

Современные вычисления все больше ориентируются на интеграцию искусственного интеллекта и высокую производительность в компактных устройствах, таких как ноутбуки и мини-ПК. Новая линейка процессоров AMD Ryzen AI 400 демонстрирует, как разработчики объединяют мощные центральные ядра, графику и нейросетевые ускорители в одном чипе, чтобы удовлетворять растущие потребности пользователей в играх, контенте и ИИ-приложениях. AMD представила процессоры серии Gorgon Point, которые включают до 12 ядер Zen 5 и до 24 потоков вычислений. Чипы поддерживают интегрированную графику RDNA 3.5, обеспечивают максимальную тактовую частоту до 5,2 ГГц и имеют энергопотребление от 15 Вт до 54 Вт. Особое внимание уделено NPU, способному обрабатывать до 60 триллионов операций в секунду (TOPS), что делает эти процессоры эффективными для задач с искусственным интеллектом. Конструкция Ryzen AI 400 сочетает ядра Zen 5 и Zen 5c, обеспечивая высокую гибкость и производительность. Несмотря на то, что архитектур ...>>

Женщины лучше распознают признаки болезни по лицу 06.01.2026

Способность распознавать, что кто-то нездоров, часто проявляется интуитивно: бледная кожа, опущенные веки, уставшее выражение лица могут сигнализировать о недомогании. Новое исследование международной группы ученых показало, что женщины в среднем точнее мужчин улавливают такие тонкие невербальные признаки болезни, что может иметь эволюционные и социальные объяснения. В отличие от предыдущих работ, где использовались отредактированные фотографии или имитация больных лиц, ученые решили проверить, насколько люди способны распознавать естественные признаки недомогания. Такой подход позволил оценить реальную чувствительность к изменениям в лицах, возникающим при болезни. В исследовании приняли участие 280 студентов, поровну мужчин и женщин. Участникам предложили оценить 24 фотографии, на которых изображены люди как в здоровом состоянии, так и во время болезни. Это дало возможность сравнить восприятие естественных признаков недомогания в реальных лицах. Для анализа состояния каждого ...>>

Случайная новость из Архива

Оживление мамонта 21.01.2025

Биотехнологический стартап Colossal Biosciences Inc., специализирующийся на возрождении вымерших животных, привлек 200 миллионов долларов на проект по созданию шерстистого мамонта. По оценке ученых, полная реализация этой идеи потребует 10,2 миллиарда долларов, что более чем в шесть раз превышает текущие инвестиции.

Специалисты компании намерены не только воскресить мамонта, но и попробовать восстановить других исчезнувших животных, таких как дронт и тасманийский тигр. Генетики используют методы ДНК-секвенирования и редактирования генома, чтобы адаптировать древний генетический материал к современным условиям.

Генеральный директор Colossal Бен Ламм заявил, что его команда активно работает над созданием детеныша шерстистого мамонта, который будет рожден суррогатной матерью-слонихой. По его словам, первые результаты можно ожидать уже к концу 2028 года. Ламм подчеркнул, что работа будет продолжаться, пока ученые не достигнут точного восстановления генома мамонта.

Методика воссоздания предполагает редактирование генов мамонта, извлеченных из древних образцов, найденных в вечной мерзлоте, и их интеграцию в клетки азиатского слона - ближайшего современного родственника мамонта. Этот процесс должен привести к появлению гибридного организма, обладающего ключевыми особенностями шерстистого мамонта.

Однако среди ученых нет единого мнения относительно этой инициативы. Некоторые специалисты скептически относятся к подобным экспериментам, сомневаясь в их обоснованности и практической пользе. Они указывают на такие проблемы, как изменение климата, сокращение естественной среды обитания и конкуренция с инвазивными видами. Несмотря на это, энтузиасты проекта уверены, что возрождение мамонтов может помочь восстановить экосистемы Арктики, предотвратив таяние вечной мерзлоты и сокращение выбросов парниковых газов.

Компания Colossal Biosciences недавно привлекла новый раунд финансирования от инвестора TWG Global, что увеличило общий объем инвестиций до 435 миллионов долларов. Это подтверждает значительный интерес к перспективам биотехнологий, направленных на восстановление вымерших видов и изучение границ возможного в современной науке.

Другие интересные новости:

▪ Исследование структуры бензола

▪ Яд паука спасет при сердечном приступе

▪ 24-контактный разъем ATX заменится 10-контактным

▪ Wavecom улучшает параметры серии Q24

▪ Брелок Tile Mate для контроля за вещами

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Технологии радиолюбителя. Подборка статей

▪ статья Способы повышения эффективности трудовой деятельности. Основы безопасной жизнедеятельности

▪ статья В какой группе бек-вокалисткой невольно стала Алла Пугачева? Подробный ответ

▪ статья Дисбактериоз. Медицинская помощь

▪ статья Индикатор напряжения электросети. Энциклопедия радиоэлектроники и электротехники

▪ статья Простой ДПФ. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026