Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Термоядерная установка. История изобретения и производства

История техники, технологии, предметов вокруг нас

Справочник / История техники, технологии, предметов вокруг нас

Комментарии к статье Комментарии к статье

Ученые уже много лет занимаются проблемой использования термоядерных реакций для целей энергетики. Созданы уникальные термоядерные установки - сложнейшие технические устройства, предназначенные для изучения возможности получения колоссальной энергии, которая выделяется пока лишь при взрыве водородной бомбы. Ученые хотят научиться контролировать ход термоядерной реакции - реакции соединения тяжелых ядер водорода (дейтерия и трития) с образованием ядер гелия при высоких температурах, - чтобы использовать выделяющуюся при этом энергию в мирных целях, на благо людям.

Термоядерная установка
Термоядерная установка

В литре водопроводной воды содержится совсем немного дейтерия. Но если этот дейтерий собрать и использовать как топливо в термоядерной установке, то можно получить энергии столько, сколько от сжигания почти 300 килограммов нефти. А для обеспечения энергией, которую сейчас получают при сжигании обычного топлива, добываемого за год, потребовалось бы извлечь дейтерий из воды, содержащейся в кубе со стороной всего 160 метров. Одна река Волга ежегодно несет в Каспийское море около 60000 таких кубов воды.

Для осуществления термоядерной реакции необходимо соблюдение нескольких условий. Так, температура в зоне, где происходит соединение тяжелых ядер водорода, должна составлять примерно 100 миллионов градусов. При такой огромной температуре речь идет уже не о газе, а о плазме. Плазма - это такое состояние вещества, когда при высоких температурах газа нейтральные атомы теряют принадлежащие им электроны и превращаются в положительные ионы. По-другому, плазма - смесь свободно движущихся положительных ионов и электронов. Второе условие состоит в необходимости поддерживать в зоне реакции плотность плазмы не ниже 100 тысяч миллиардов частиц в кубическом сантиметре. И, наконец, главное и самое трудное, - надо удержать ход термоядерной реакции хотя бы не меньше одной секунды.

Рабочая камера термоядерной установки - тороидальная, похожа на огромный пустотелый бублик. Она заполнена смесью дейтерия и трития. Внутри самой камеры создается плазменный виток - проводник, по которому пропускают электрический ток силой около 20 миллионов ампер.

Электрический ток выполняет три важные функции. Во-первых, он создает плазму. Во-вторых, разогревает ее до ста миллионов градусов. И, наконец, ток создает вокруг себя магнитное поле, то есть окружает плазму магнитными силовыми линиями. В принципе силовые линии вокруг плазмы должны были бы удержать ее в подвешенном состоянии и не дать плазме возможность соприкоснуться со стенками камеры Однако удержать плазму в подвешенном состоянии не так просто.

Электрические силы деформируют плазменный проводник, не обладающий прочностью металлического проводника. Он изгибается, ударяется о стенку камеры и отдает ей свою тепловую энергию. Для предотвращения этого поверх тороидальной камеры надевают еще катушки, создающие в камере продольное магнитное поле, оттесняющее плазменный проводник от стенок. Только и этого оказывается мало, поскольку плазменный проводник с током стремится растянуться, увеличить свой диаметр.

Удержать плазменный проводник от расширения призвано также магнитное поле, которое создается автоматически, без посторонних внешних сил. Плазменный проводник помещают вместе с тороидальной камерой еще в одну камеру большего размера, сделанную из немагнитного материала, обычно меди. Как только плазменный проводник делает попытку отклониться от положения равновесия, в медной оболочке по закону электромагнитной индукции возникает индукционный ток, обратный по направлению току в плазме. В результате появляется противодействующая сила, отталкивающая плазму от стенок камеры.

Удерживать плазму от соприкосновения со стенками камеры магнитным полем предложил в 1949 году А.Д. Сахаров, а немного позже американец Дж. Спитцер.

В физике принято давать названия каждому новому типу экспериментальных установок. Сооружение с такой системой обмоток именуется токамаком - сокращение от "тороидальная камера и магнитная катушка".

В 1970-е годы в СССР была построена термоядерная установка, названная "Токамак-10". Ее разработали в Институте атомной энергии им. И.В. Курчатова. На этой установке получили температуру плазменного проводника 10 миллионов градусов, плотность плазмы не ниже 100 тысяч миллиардов частиц в кубическом сантиметре и время удержания плазмы близко к 0,5 секунды. Крупнейшая на сегодня в нашей стране установка "Токамак-15" также построена в московском научном центре "Курчатовский институт".

Термоядерная установка
Токамак (тороидальная камера с магнитными катушками)

Все созданные термоядерные установки пока лишь потребляют энергию на разогрев плазмы и создание магнитных полей. Термоядерная установка будущего должна, наоборот, выделять столько энергии, чтобы небольшую ее часть можно было использовать для поддержания термоядерной реакции, то есть подогрева плазмы, создания магнитных полей и питания многих вспомогательных устройств и приборов, а основную часть - отдавать для потребления в электрическую сеть

В 1997 году в Великобритании на токамаке JET достигли совпадения вложенной и полученной энергии. Хотя и этого, конечно, недостаточно для самоподдержания процесса: до 80 процентов полученной энергии теряется. Для того чтобы реактор работал, необходимо производить энергии в пять раз больше, чем тратится на нагревание плазмы и создание магнитных полей.

В 1986 году страны Европейского союза вместе с СССР, США и Японией решили совместными усилиями разработать и построить к 2010 году достаточно большой токамак, способный производить энергию не только для поддержания термоядерного синтеза в плазме, но и для получения полезной электрической мощности. Этот реактор назвали ITER, аббревиатура от - "международный термоядерный экспериментальный реактор". К 1998 году удалось завершить проектные расчеты, но из-за отказа американцев в конструкцию реактора пришлось вносить изменения, чтобы уменьшить его стоимость.

Можно позволить частицам двигаться естественным образом, а камере придать форму, повторяющую их траекторию. Камера тогда имеет довольно причудливый вид. Она повторяет форму плазменного шнура, возникающего в магнитном поле внешних катушек сложной конфигурации. Магнитное поле создают внешние катушки гораздо более сложной конфигурации, чем в токамаке. Устройства подобного рода называют стеллараторами. В нашей стране построен торсатрон "Ураган-3М". Этот экспериментальный стелларатор рассчитан на удержание плазмы, нагретой до десяти миллионов градусов.

Термоядерная установка
Схема реакции дейтерий-тритий

В настоящее время у токамаков появились и другие серьезные конкуренты, использующие инерциальный термоядерный синтез. В этом случае несколько миллиграммов дейтерий-тритиевой смеси заключают в капсулу диаметром 1-2 миллиметра. На капсуле фокусируют импульсное излучение нескольких десятков мощных лазеров. В результате капсула мгновенно испаряется. В излучение надо вложить 2 МДж энергии за 5-10 наносекунд. Тогда световое давление сожмет смесь до такой степени, что может пойти реакция термоядерного синтеза. Выделившаяся энергия при взрыве, по мощности эквивалентного взрыву ста килограммов тротила, будет преобразовываться в более удобную для использования форму - например в электрическую. Экспериментальная установка такого типа (NIF) строится в США и должна начать работать в 2010 году.

Однако строительство стеллараторов и установок инерциального синтеза также наталкивается на серьезные технические трудности. Вероятно, практическое использование термоядерной энергии - вопрос не ближайшего будущего.

Автор: Мусский С.А.

 Рекомендуем интересные статьи раздела История техники, технологии, предметов вокруг нас:

▪ Линза и очки

▪ Бакелит

▪ Дизельный двигатель

Смотрите другие статьи раздела История техники, технологии, предметов вокруг нас.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Хорошо управляемые луга могут компенсировать выбросы от скота 15.02.2026

Животноводство, особенно разведение крупного рогатого скота, часто обвиняют в значительном вкладе в глобальное потепление из-за мощного парникового газа - метана, который выделяется при пищеварении у жвачных животных. Это вызывает острые политические споры и призывы к сокращению потребления мяса. Однако ученые напоминают, что полная картина климатического воздействия отрасли не ограничивается только выбросами от животных: огромную роль играет окружающая экосистема - пастбища, почва и растительность, которые способны активно поглощать углекислый газ из атмосферы. Исследователи из Университета Небраски-Линкольна решили глубже изучить этот баланс. Группа под руководством профессора Галена Эриксона сосредоточилась на том, как правильно организованные пастбища накапливают углерод в растениях и грунте благодаря естественным процессам, стимулируемым выпасом скота. Ученые подчеркивают, что при достаточном уровне осадков и грамотном управлении такие луга превращаются в мощные природные погло ...>>

NASA тестирует инновационную технологию крыла 15.02.2026

Коммерческая авиация ежегодно расходует колоссальные объемы керосина, что сказывается не только на бюджете авиакомпаний, но и на состоянии окружающей среды. В 2024 году глобальные затраты на авиационное топливо достигли 291 миллиарда долларов, и эта сумма продолжает расти. Чтобы справиться с этими вызовами, NASA активно работает над технологиями, способными заметно повысить аэродинамическую эффективность самолетов. Одним из самых перспективных направлений стало создание специальной конструкции крыла, которая максимизирует естественный ламинарный поток воздуха и минимизирует сопротивление. В январе 2026 года специалисты NASA Armstrong Flight Research Center успешно провели важный этап наземных испытаний концепции Crossflow Attenuated Natural Laminar Flow (CATNLF). Для эксперимента под фюзеляж исследовательского самолета F-15B закрепили вертикально ориентированную масштабную модель высотой около 0,9 м (3 фута), напоминающую узкий киль. Такая компоновка позволила подвергнуть прототип р ...>>

Забота о внуках очень полезна для здоровья мозга 14.02.2026

Общение между поколениями приносит радость всей семье, но мало кто задумывается, насколько активно бабушки и дедушки, заботящиеся о внуках, поддерживают свою умственную форму. Регулярное взаимодействие с детьми стимулирует мозг пожилых людей, помогая сохранять память, скорость мышления и общую когнитивную активность. Новые научные данные подтверждают, что такая добровольная помощь не только важна для общества, но и может замедлять возрастные изменения в мозге. Исследователи из Тилбургского университета в Нидерландах провели анализ, чтобы понять, приносит ли уход за внуками реальную пользу здоровью пожилых людей. Ведущий автор работы Флавия Черечес отметила, что многие бабушки и дедушки регулярно присматривают за детьми, и оставался открытым вопрос, насколько это положительно сказывается на их собственном благополучии, особенно в плане когнитивных функций. Ученые поставили цель выяснить, способен ли регулярный уход за внуками замедлить снижение памяти и других умственных способ ...>>

Случайная новость из Архива

Теория лазеров может быть пересмотрена 21.07.2020

Оптическое устройство, позволяющее получить когерентный монохроматический луч света и известное под названием лазер, было изобретено более 60 лет назад. И, казалось бы, что за столь долгое время, в течение которого лазеры нашли очень широкое применение в самых различных областях науки и техники, ученые должны были досконально разобраться в принципах работы этого устройства, которое, согласно современным учебникам физики работает на границе между классической физикой и квантовой механикой. Однако ученые из университета Суррея, Великобритания, Технологического института Карлсруэ и института IOSB Фраунгофера, Германия поставили под сомнение ортодоксальную теорию о принципах работы лазера.

То, что дало ученым возможность поставить под сомнение существующую теорию, является шириной спектральной линии лазерного света. По всем канонам физики идеальный лазер должен производить свет строго определенной длины волны, т.е. ширина его спектральной линии должна стремиться к бесконечно малому значению. На практике же лазеры производят фотоны света, имеющие очень малые отклонения длины волны от базового значения, и эти отклонения делают так, что ширина спектральной линии лазерного света имеет определенное ненулевое значение, и чем выше класс (качество) лазера, тем тоньше ширина этой линии.

В ортодоксальной теории это объясняется влиянием некоторых эффектов из области квантовой механики. Но такое объяснение, при тщательном рассмотрении, не выдерживает критики. Оно не раз становилось причиной затруднительного положения, в которое попадали некоторые преподаватели физики, которым наиболее умные из студентов задавали на лекциях весьма "неудобные" вопросы.

Проведя свои эксперименты, ученые обнаружили, что основной принцип работы лазера, определяющий, что усиление света в теле лазера полностью компенсирует потери, является весьма приближенным к действительности. Ученые измерили количественные значения энергетических потерь в лазере и выяснили, что существует еще один вид крошечных избыточных потерь, которые никак не компенсируются усилением света, и они, эти потери, прямо влияют на расширение спектральной линии лазерного света. Другими словами, во всем этом не наблюдается никакого влияния квантовой механики, а работают обычные классические физические явления.

Другие интересные новости:

▪ Алгоритм, прогнозирующий преступления

▪ Гаджет Livescribe Echo Smartpen

▪ Измерение магнитного поля на атомном уровне

▪ Крах банка

▪ Смартфон Nokia C5-03

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Регуляторы тока, напряжения, мощности. Подборка статей

▪ статья Никто не лицемер в своих забавах (наслаждениях). Крылатое выражение

▪ статья Почему серебро тускнеет? Подробный ответ

▪ статья Техническое обслуживании автомобилей. Типовая инструкция по охране труда

▪ статья Квазисенсорный выключатель. Энциклопедия радиоэлектроники и электротехники

▪ статья Удаление пятен от травы. Химический опыт

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026