Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Основы генетики. История и суть научного открытия

Важнейшие научные открытия

Справочник / Важнейшие научные открытия

Комментарии к статье Комментарии к статье

Человечеству потребовалось более 2500 лет, чтобы суметь раскрыть закономерности наследственности. "...Древние натурфилософы и врачи не могли правильно понять явления наследственности ввиду ограниченности и частично ошибочности их знания анатомии и физиологии органов размножения и процессов оплодотворения и даже развития, - отмечает известный советский генетик А.Е. Гайсинович. - Им было наиболее доступно изучение строения животных, и неудивительно, что они переносили на человека обнаруженные у животных особенности анатомии их половых органов...

Происхождение мужского семени было неизвестно в древности, и это привело к созданию ошибочных представлений об образовании семени из частиц, отделяемых всеми органами тела и повторяющих в миниатюре их форму и строение. Это была в сущности первая теория наследственности, проявившая необычайную живучесть вплоть до XIX века, когда ее возродил Ч. Дарвин в своей гипотезе пангенезиса..." Боролись две точки зрения. Первая, допускавшая существование женского семени и его участие в оплодотворении. И вторая, одним из ярких представителей которой был Аристотель. Он считал, что форма будущего зародыша определяется только мужским семенем. Эпигенетическая теория развития Аристотеля и теории пангенезиса и преформации претерпели многовековую борьбу.

"Возрожденная в XVII веке У. Гарвеем, - пишет А.Е. Гайсинович, - она тем не менее была отклонена большинством биологов на основе наблюдений микроскопистов XVII–XVIII веков. Лишь во второй половине XVIII века было поколеблено учение о преформации и были сделаны новые попытки сформулировать эпигенетические теории развития и наследственности, основанные на признании существования мужского и женского семени и принципа пангенезиса (П. Мопертюи, Ж. Бюффон). Хотя К.Ф. Вольфу удалось заложить первые основы эмбриологии, однако познание сущности процессов оплодотворения осталось скрытым от него, и его представления о явлениях изменчивости и наследственности были преждевременными и ошибочными. Большим шагом вперед в изучении явлений наследственности было использование растений для экспериментов по их гибридизации. Опыты гибридизаторов XVIII века окончательно подтвердили смутно предполагавшееся еще в древности наличие двух полов у растений и одинаковое их участие в явлениях наследственности (И. Кельрейтер и многие другие). Однако учение о неизменности видов и мнимое его подтверждение при межвидовой гибридизации не позволили им достоверно доказать независимую передачу по наследству отдельных видовых и индивидуальных признаков".

Это стало огромной заслугой монаха-ученого Грегора Менделя, по праву считающегося основоположником науки о наследственности.

Грегор Иоганн Мендель (1822–1884) родился в Гейзендорфе, что в Силезии, в семье крестьянина. В начальной школе он обнаружил выдающиеся математические способности и по настоянию учителей продолжил образование в гимназии небольшого, находящегося поблизости городка Опава. Однако на дальнейшее обучение Менделя денег в семье недоставало. С большим трудом их удалось наскрести на завершение гимназического курса. Выручила младшая сестра Тереза: она пожертвовала скопленным для нее приданым. На эти средства Мендель смог проучиться еще некоторое время на курсах по подготовке в университет. После этого средства семьи иссякли окончательно.

Выход предложил профессор математики Франц. Он посоветовал Менделю вступить в августинский монастырь города Брно. Его возглавлял в то время аббат Кирилл Напп - человек широких взглядов, поощрявший занятия наукой. В 1843 году Мендель поступил в этот монастырь и получил имя Грегор (при рождении ему было дано имя Иоганн). Через четыре года монастырь направил двадцатипятилетнего монаха Менделя учителем в среднюю школу. Затем с 1851 по 1853 года он изучал естественные науки, особенно физику, в Венском университете, после чего стал преподавателем физики и естествознания в реальном училище города Брно.

Его педагогическую деятельность, продолжавшуюся четырнадцать лет, высоко ценили и руководство училища, и ученики. По воспоминаниям последних, Мендель был одним из любимейших учителей. Последние пятнадцать лет жизни Мендель был настоятелем монастыря.

С юности Грегор интересовался естествознанием. Будучи скорее любителем, чем профессиональным ученым-биологом, Мендель постоянно экспериментировал с различными растениями и пчелами. В 1856 году он начал классическую работу по гибридизации и анализу наследования признаков у гороха.

Мендель трудился в крохотном, менее двух с половиною соток гектара, монастырском садике. Он высевал горох на протяжении восьми лет, манипулируя двумя десятками разновидностей этого растения, различных по окраске цветков и по виду семян. Он проделал десять тысяч опытов.

Изучая форму семян у растений, полученных в результате скрещиваний, он ради уяснения закономерностей передачи лишь одного признака ("гладкие - морщинистые") подверг анализу 7324 горошины. Каждое семя он рассматривал в лупу, сравнивая их форму и делая записи.

Мендель так сформулировал цель этой серии опытов: "Задачей опыта и было наблюдать эти изменения для каждой пары различающихся признаков и установить закон, по которому они переходят в следующих друг за другом поколениях. Поэтому опыт распадается на ряд отдельных экспериментов по числу наблюдаемых у опытных растений константно-различающихся признаков".

С опытов Менделя начался другой отсчет времени, главной отличительной чертой которого стал опять же введенный Менделем гибридологический анализ наследственности отдельных признаков родителей в потомстве Трудно сказать, что именно заставило естествоиспытателя обратиться к абстрактному мышлению, отвлечься от голых цифр и многочисленных экспериментов. Но именно оно позволило скромному преподавателю монастырской школы увидеть целостную картину исследования; увидеть ее лишь после того, как пришлось пренебречь десятыми и сотыми долями, обусловленными неизбежными статистическими вариациями. Только тогда буквенно "помеченные" исследователем альтернативные признаки открыли ему нечто сенсационное: определенные типы скрещивания в разном потомстве дают соотношение 3:1, 1:1, или 1:2:1.

Мендель обратился к работам своих предшественников за подтверждением мелькнувшей у него догадки. Те, кого исследователь почитал за авторитеты, пришли в разное время, и каждый по-своему, к общему заключению: гены могут обладать доминирующими (подавляющими) или рецессивными (подавляемыми) свойствами. А раз так, делает вывод Мендель, то комбинация неоднородных генов и дает то самое расщепление признаков, которое наблюдается в его собственных опытах. И в тех самых соотношениях, что были вычислены с помощью его статистического анализа. "Проверяя алгеброй гармонию" происходящих изменений в полученных поколениях гороха, ученый вводит буквенные обозначения. Он отмечает заглавной буквой доминантное, а строчной - рецессивное состояние одного и того же гена.

Перемножив комбинационные ряды. (А+2Аа+а)х(В-2Вb+b), Мендель находит все возможные типы сочетания.

"Ряд состоит, следовательно, из 9 членов, из которых 4 представлены в нем по одному разу каждый и константны в обоих признаках; формы АВ, ab схожи с исходными видами, обе другие представляют единственные, кроме них, возможные константные комбинации между соединившимися признаками А, а, В, b. Четыре члена встречаются по два раза каждый и в одном признаке константны, в другом - гибридны. Один член встречается 4 раза и является гибридным в обоих признаках... Этот ряд представляет собой бесспорно комбинационный ряд, в котором связаны почленно оба ряда развития для признаков А и а, В и b".

В результате Мендель приходит к следующим выводам: "Потомки гибридов, соединяющих в себе несколько существенно различных признаков, представляют собой членов комбинационного ряда, в котором соединены ряды развития каждой пары различающихся признаков. Этим одновременно доказывается, что поведение в гибридном соединении каждой пары различающихся признаков независимо от других различий у обоих исходных растений", и поэтому "константные признаки, которые встречаются у различных форм родственной растительной группы, могут вступить во все соединения, которые возможны по правилам комбинаций".

Обобщенно результаты работы ученого выглядят так:

1) все гибридные растения первого поколения одинаковы и проявляют признак одного из родителей;

2) среди гибридов второго поколения появляются растения как с доминантными, так и с рецессивными признаками в соотношении 3: 1;

3) два признака в потомстве ведут себя независимо и во втором поколении.

4) необходимо различать признаки и их наследственные задатки (растения, проявляющие доминантные признаки, могут в скрытом виде нести задатки рецессивных);

5) объединение мужских и женских гамет случайно в отношении того, задатки каких признаков несут эти гаметы.

В феврале и марте 1865 года в двух докладах на заседаниях провинциального научного кружка, носившего название Общества естествоиспытателей города Брно, один из рядовых его членов - Грегор Мендель - сообщил о результатах своих многолетних исследований, завершенных в 1863 году. Несмотря на то что его доклады были довольно холодно встречены членами кружка, он решился опубликовать свою работу. Она увидела свет в 1866 году в трудах общества под названием "Опыты над растительными гибридами".

Современники не поняли Менделя и не оценили его труд. Слишком уж простой, бесхитростной представилась им схема, в которую без труда и скрипа укладывались сложные явления, составляющие в представлении человечества основание незыблемой пирамиды эволюции. К тому же, в концепции Менделя были и уязвимые места. Так, по крайней мере, представлялось это его оппонентам. И самому исследователю тоже, поскольку он не мог развеять их сомнений. Одной из "виновниц" его неудач была ястребинка.

Ботаник Карл фон Негели, профессор Мюнхенского университета, прочитав работу Менделя, предложил автору проверить обнаруженные им законы на ястребинке. Это маленькое растение было излюбленным объектом Негели. И Мендель согласился. Он потратил много сил на новые опыты. Ястребинка - чрезвычайно неудобное для искусственного скрещивания растение, так как оно очень мелкое. Приходилось напрягать зрение, а оно все больше и больше ухудшалось. Потомство, полученное от скрещивания ястребинки, не подчинялось закону, как он считал, правильному для всех. Лишь спустя годы после того, как биологи установили факт иного, не полового размножения ястребинки, возражения профессора Негели, главного оппонента Менделя, были сняты с повестки дня. Но ни Менделя, ни самого Негели уже, увы, не было в живых.

Очень образно о судьбе работы Менделя сказал крупнейший советский генетик академик Б.Л. Астауров: "Судьба классической работы Менделя превратна и не чужда драматизма. Хотя им были обнаружены, ясно показаны и в значительной мере поняты весьма общие закономерности наследственности, биология того времени еще не доросла до осознания их фундаментальности. Сам Мендель с удивительной проницательностью предвидел общезначимость обнаруженных на горохе закономерностей и получил некоторые доказательства их применимости к некоторым другим растениям (трем видам фасоли, двум видам левкоя, кукурузе и ночной красавице). Однако его настойчивые и утомительные попытки приложить найденные закономерности к скрещиванию многочисленных разновидностей и видов ястребинки не оправдали надежд и потерпели полное фиаско. Насколько счастлив был выбор первого объекта (гороха), настолько же неудачен второй. Только много позднее, уже в нашем веке, стало понятно, что своеобразные картины наследования признаков у ястребинки являются исключением, лишь подтверждающим правило. Во времена Менделя никто не мог подозревать, что предпринятые им скрещивания разновидностей ястребинки фактически не происходили, так как это растение размножается без опыления и оплодотворения, девственным путем, посредством так называемой "апогамии". Неудача кропотливых и напряженных опытов, вызвавших почти полную потерю зрения, свалившиеся на Менделя обременительные обязанности прелата и преклонные годы вынудили его прекратить любимые исследования".

Слава и почет придут к Менделю уже после смерти. Он же покинет жизнь, так и не разгадав тайны ястребинки, не "уложившейся" в выведенные им законы единообразия гибридов первого поколения и расщепления признаков в потомстве. Слишком рано великий исследователь сообщил о своих открытиях научному миру. Последний был к этому еще не готов. Лишь в 1900 году, переоткрыв законы Менделя, мир поразился красоте логики эксперимента исследователя и изящной точности его расчетов. И хотя ген продолжал оставаться гипотетической единицей наследственности, сомнения в его материальности окончательно исчезли.

Революционизирующая роль менделизма в биологии становилась все более очевидной. К началу тридцатых годов нашего столетия генетика и лежащие в ее основе законы Менделя стали признанным фундаментом современного дарвинизма. Менделизм сделался теоретической основой для выведения новых высокоурожайных сортов культурных растений, более продуктивных пород домашнего скота, полезных видов микроорганизмов Он же дал толчок развитию медицинской генетики.

Знаменитый физик Эрвин Шредингер считал, что применение законов Менделя равнозначно внедрению квантового начала в биологии

Автор: Самин Д.К.

 Рекомендуем интересные статьи раздела Важнейшие научные открытия:

▪ Периодический закон

▪ Сверхпроводимость

▪ Классификация растений

Смотрите другие статьи раздела Важнейшие научные открытия.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Хорошо управляемые луга могут компенсировать выбросы от скота 15.02.2026

Животноводство, особенно разведение крупного рогатого скота, часто обвиняют в значительном вкладе в глобальное потепление из-за мощного парникового газа - метана, который выделяется при пищеварении у жвачных животных. Это вызывает острые политические споры и призывы к сокращению потребления мяса. Однако ученые напоминают, что полная картина климатического воздействия отрасли не ограничивается только выбросами от животных: огромную роль играет окружающая экосистема - пастбища, почва и растительность, которые способны активно поглощать углекислый газ из атмосферы. Исследователи из Университета Небраски-Линкольна решили глубже изучить этот баланс. Группа под руководством профессора Галена Эриксона сосредоточилась на том, как правильно организованные пастбища накапливают углерод в растениях и грунте благодаря естественным процессам, стимулируемым выпасом скота. Ученые подчеркивают, что при достаточном уровне осадков и грамотном управлении такие луга превращаются в мощные природные погло ...>>

NASA тестирует инновационную технологию крыла 15.02.2026

Коммерческая авиация ежегодно расходует колоссальные объемы керосина, что сказывается не только на бюджете авиакомпаний, но и на состоянии окружающей среды. В 2024 году глобальные затраты на авиационное топливо достигли 291 миллиарда долларов, и эта сумма продолжает расти. Чтобы справиться с этими вызовами, NASA активно работает над технологиями, способными заметно повысить аэродинамическую эффективность самолетов. Одним из самых перспективных направлений стало создание специальной конструкции крыла, которая максимизирует естественный ламинарный поток воздуха и минимизирует сопротивление. В январе 2026 года специалисты NASA Armstrong Flight Research Center успешно провели важный этап наземных испытаний концепции Crossflow Attenuated Natural Laminar Flow (CATNLF). Для эксперимента под фюзеляж исследовательского самолета F-15B закрепили вертикально ориентированную масштабную модель высотой около 0,9 м (3 фута), напоминающую узкий киль. Такая компоновка позволила подвергнуть прототип р ...>>

Забота о внуках очень полезна для здоровья мозга 14.02.2026

Общение между поколениями приносит радость всей семье, но мало кто задумывается, насколько активно бабушки и дедушки, заботящиеся о внуках, поддерживают свою умственную форму. Регулярное взаимодействие с детьми стимулирует мозг пожилых людей, помогая сохранять память, скорость мышления и общую когнитивную активность. Новые научные данные подтверждают, что такая добровольная помощь не только важна для общества, но и может замедлять возрастные изменения в мозге. Исследователи из Тилбургского университета в Нидерландах провели анализ, чтобы понять, приносит ли уход за внуками реальную пользу здоровью пожилых людей. Ведущий автор работы Флавия Черечес отметила, что многие бабушки и дедушки регулярно присматривают за детьми, и оставался открытым вопрос, насколько это положительно сказывается на их собственном благополучии, особенно в плане когнитивных функций. Ученые поставили цель выяснить, способен ли регулярный уход за внуками замедлить снижение памяти и других умственных способ ...>>

Случайная новость из Архива

Компьютерный фитнес-центр без тренажеров 22.11.2025

Эффективность тренировки все меньше зависит от количества проведенных в зале часов и все больше - от точности воздействия на организм. Именно на этой идее построена концепция Upgrade Labs, первого в мире "AI-центра долголетия", предлагающего радикально иной подход к физическому развитию и восстановлению без традиционных нагрузок и тяжелых тренажеров.

Создателем проекта стал Дэйв Эспри, широко известный в мире биохакинга. Некогда он весил 136 килограммов, страдал предиабетом и артритом, однако к 52 годам полностью изменил состояние своего организма и утверждает, что намерен прожить как минимум 180 лет. Эспри уверен, что секрет не в усилении тренировок, а в том, чтобы тренироваться умнее - используя точную аналитику и корректно подобранные стимулы.

Началом любого посещения Upgrade Labs становится комплексная диагностика. Она проходит без привычных зеркал: вместо отражения в центре используются данные. Специальная система за две минуты собирает информацию более чем о четырех тысячах биомаркеров, оценивает состав тела, подвижность суставов и выявляет слабые звенья, которые человек обычно не замечает. Алгоритмы анализируют параметры и формируют персонализированную стратегию дальнейших нагрузок.

Одним из ключевых элементов программы является короткая, но высокоинтенсивная кардиотренировка. Здесь ее обеспечивает AI Adaptive Bike - велосистема, самостоятельно корректирующая сопротивление в зависимости от частоты пульса и текущей мощности. Согласно исследованиям, на которые ссылается Upgrade Labs, пять минут такой нагрузки эквивалентны почти часу традиционного спиннинга. Дополняет ее PowerPlate - виброплатформа, заставляющая мышцы сокращаться значительно быстрее и сокращающая длительность тренировки.

Силовые упражнения также проходят в сжатом формате. "Умный" тренажер, установленный в центре, фиксирует динамику усилий в реальном времени и сам увеличивает или уменьшает вес. В итоге полноценная часовая силовая сессия занимает всего 10-15 минут, но при этом считается более эффективной за счет точного подбора сопротивления и минимизации пустых повторов.

Особое внимание уделяется восстановлению, которое в Upgrade Labs рассматривают как полноценную часть тренировки. Клиентам доступны криотерапия, инфракрасные капсулы и нейростимуляция - методы, ускоряющие регенерацию тканей и снижающие уровень стресса. По словам Эспри, именно избыточный объем традиционных тренировок в сочетании с недостатком отдыха мешает людям добиваться результатов. Он вспоминает, что когда-то тренировался по 90 минут шесть раз в неделю, но при этом не смог уменьшить объем талии ни на сантиметр.

Эспри утверждает, что индивидуализированный подход на основе ИИ позволяет точнее определить, какие воздействия действительно работают. По наблюдениям специалистов центра, такая система способствует росту мышечной массы, снижению уровня жира, улучшению когнитивных функций и даже уменьшению биологического возраста. Именно поэтому среди клиентов Upgrade Labs так много предпринимателей, спортсменов, айтишников и тех, кто стремится добиться максимального эффекта за минимальное время. Абонементы начинаются от 189 долларов в месяц.

Другие интересные новости:

▪ Создан прототип квантового радара

▪ Американская рулетка

▪ Микросхема памяти на основе магниторезистивных структур

▪ Омолаживающие таблетки

▪ Термостойкая солнечная панель с высоким КПД

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Цифровая техника. Подборка статей

▪ статья Железобетон. История изобретения и производства

▪ статья Почему молнию сопровождает гром? Подробный ответ

▪ статья Восьмерка одним концом. Советы туристу

▪ статья Искусство освещения в интерьере квартиры. Энциклопедия радиоэлектроники и электротехники

▪ статья Двойное предсказание. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026