Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Шредингер Эрвин Рудольф Йозеф Александр. Биография ученого

Биографии великих ученых

Справочник / Биографии великих ученых

Комментарии к статье Комментарии к статье

Шредингер Эрвин Рудольф Йозеф Александр
Эрвин Шредингер
(1887-1961).

Австрийский физик Эрвин Рудольф Йозеф Александр Шредингер родился 12 августа 1887 года в Вене. Его отец, Рудольф Шредингер, был владельцем фабрики по производству клеенки, увлекался живописью и питал интерес к ботанике. Единственный ребенок в семье, Эрвин получил начальное образование дома. Его первым учителем был отец, о котором впоследствии Шредингер отзывался как о "друге, учителе и не ведающем усталости собеседнике". В 1898 году Шредингер поступил в Академическую гимназию, где был первым учеником по греческому языку, латыни, классической литературе, математике и физике. В гимназические годы у Шредингера возникла любовь к театру.

В 1906 году он поступил в Венский университет и на следующий год начал посещать лекции по физике Фридриха Газенерля, чьи блестящие идеи произвели на Эрвина глубокое впечатление. Защитив в 1910 году докторскую диссертацию, Шредингер становится ассистентом физика-экспериментатора Франца Экснера во 2-м физическом институте при Венском университете. В этой должности он состоял вплоть до начала Первой мировой войны. В 1913 году Шредингер и К. В. Ф. Кольрауш получают премию Хайтингера Императорской академии наук за экспериментальные исследования радия.

Во время войны Шредингер служил офицером-артиллеристом в захолустном гарнизоне, расположенном в горах, вдали от линии фронта. Продуктивно используя свободное время, он изучал общую теорию относительности Альберта Эйнштейна. По окончании войны он возвращается во 2-й физический институт в Вене, где продолжает свои исследования по общей теории относительности, статистической механике (занимающейся изучением систем, состоящих из очень большого числа взаимодействующих объектов, например, молекул газа) и дифракции рентгеновского излучения. Тогда же Шредингер проводит обширные экспериментальные и теоретические исследования по теории цвета и восприятию цвета.

В 1920 году Шредингер вступил в брак с Аннемарией Бертель, детей у супругов не было. В том же году Шредингер отправился в Германию, где стал ассистентом Макса Вина в Йенском университете, но через четыре месяца становится адъюнкт-профессором Штутгартского технического университета. Через один семестр он покидает Штутгарт и на короткое время занимает пост профессора в Бреслау (ныне Вроцлав, Польша). Затем Шредингер переезжает в Швейцарию и становится там полным профессором, а также преемником Эйнштейна и Макса фон Лауэ на кафедре физики Цюрихского университета.

В Цюрихе, где Шредингер остается с 1921 по 1927 год, он занимается в основном термодинамикой и статистической механикой и их применением для объяснения природы газов и твердых тел. Интересуясь широким кругом физических проблем, он следит и за успехами квантовой теории, но не сосредоточивает свое внимание на этой области вплоть до 1925 года, когда появился благоприятный отзыв Эйнштейна по поводу волновой теории материи Луи де Бройля.

Квантовая теория родилась в 1900 году, когда Макс Планк предложил теоретический вывод о соотношении между температурой тела и испускаемым этим телом излучением, вывод, который долгое время ускользал от других ученых. Затем к этой теории "приложили руку" Эйнштейн, Нильс Бор, Эрнест Резерфорд.

Новая существенная особенность квантовой теории проявилась в 1924 году, когда де Бройль выдвинул радикальную гипотезу о волновом характере материи: если электромагнитные волны, например свет, иногда ведут себя как частицы (что показал Эйнштейн), то частицы, например электрон при определенных обстоятельствах, могут вести себя как волны. В формулировке де Бройля частота, соответствующая частице, связана с ее энергией, как в случае фотона (частицы света), но предложенное де Бройлем математическое выражение было эквивалентным соотношением между длиной волны, массой частицы и ее скоростью (импульсом). Существование электронных волн было экспериментально доказано в 1927 году Клинтоном Дж. Дэвиссоном и Лестером Г. Джермером в Соединенных Штатах и Дж. П. Томсоном в Англии.

Под впечатлением от комментариев Эйнштейна по поводу идей де Бройля Шредингер предпринял попытку применить волновое описание электронов к построению последовательной квантовой теории, не связанной с неадекватной моделью атома Бора. В известном смысле он намеревался сблизить квантовую теорию с классической физикой, которая накопила немало примеров математического описания волн. Первая попытка, предпринятая Шредингером в 1925 году, закончилась неудачей. Скорости электронов в теории Шредингера были близки к скорости света, что требовало включения в нее специальной теории относительности Эйнштейна и учета предсказываемого ею значительного увеличения массы электрона при очень больших скоростях. Одной из причин постигшей ученого неудачи было то, что он не учел наличия специфического свойства электрона, известного ныне под названием спина (вращение электрона вокруг собственной оси наподобие волчка), о котором в то время было мало известно.

Следующую попытку Шредингер предпринял в 1926 году. Скорости электронов на этот раз были выбраны им настолько малыми, что необходимость в привлечении теории относительности отпадала сама собой. Вторая попытка увенчалась выводом волнового уравнения Шредингера, дающего математическое описание материи в терминах волновой функции. Шредингер назвал свою теорию волновой механикой. Решения волнового уравнения находились в согласии с экспериментальными наблюдениями и оказали глубокое влияние на последующее развитие квантовой теории.

Незадолго до того Вернер Гейзенберг, Макс Борн и Паскуаль Иордан опубликовали другой вариант квантовой теории, получивший название матричной механики, которая описывала квантовые явления с помощью таблиц наблюдаемых величин. Эти таблицы представляют собой определенным образом упорядоченные математические множества, называемые матрицами, над которыми по известным правилам можно производить различные математические операции. Матричная механика также позволяла достичь согласия с наблюдаемыми экспериментальными данными, но в отличие от волновой механики не содержала никаких конкретных ссылок на пространственные координаты или время. Гейзенберг особенно настаивал на отказе от каких-либо простых наглядных представлений или моделей в пользу только таких свойств, которые могли быть определены из эксперимента.

Шредингер показал, что волновая механика и матричная механика математически эквивалентны. Известные ныне под общим названием квантовой механики, эти две теории дали долгожданную общую основу описания квантовых явлений. Многие физики отдавали предпочтение волновой механике, поскольку ее математический аппарат был им более знаком, а ее понятия казались более "физическими"; операции же над матрицами - более громоздкими.

В 1927 году Шредингер по приглашению Планка стал его преемником на кафедре теоретической физики Берлинского университета.

Вскоре после того, как Гейзенберг и Шредингер разработали квантовую механику, П. А. М. Дирак предложил более общую теорию, в которой элементы специальной теории относительности Эйнштейна сочетались с волновым уравнением. Уравнение Дирака применимо к частицам, движущимся с произвольными скоростями. Спин и магнитные свойства электрона следовали из теории Дирака без каких бы то ни было дополнительных предположений. Кроме того, теория Дирака предсказывала существование античастиц, таких как позитрон и антипротон, - двойников частиц с противоположными по знаку электрическими зарядами.

В 1933 году Шредингер и Дирак были удостоены Нобелевской премии по физике "за открытие новых продуктивных форм атомной теории". На церемонии презентации Ганс Плейель, член Шведской королевской академии наук, воздал должное Шредингеру за "создание новой системы механики, которая справедлива для движения внутри атомов и молекул". По словам Плейеля, волновая механика дает не только "решение ряда проблем в атомной физике, но и простой и удобный метод исследования свойств атомов и молекул и стала мощным стимулом развития физики".

Наряду с Эйнштейном и де Бройлем Шредингер был среди противников копенгагенской интерпретации квантовой механики (названной так в знак признания заслуг Нильса Бора, много сделавшего для становления квантовой механики; Бор жил и работал в Копенгагене), поскольку его отталкивало отсутствие в ней детерминизма. В основу копенгагенской интерпретации положено соотношение неопределенности Гейзенберга, согласно которому положение и скорость частицы не могут быть точно известны одновременно. Чем точнее измерено положение частицы, тем неопределеннее скорость, и наоборот. Субатомные события могут быть предсказаны лишь как вероятности различных исходов экспериментальных измерений. Шредингер отрицал копенгагенский взгляд на волновую и корпускулярную модели как на "дополнительные", сосуществующие с картиной реальности, и продолжал поиски описания поведения материи в терминах одних лишь волн. Однако на этом пути он потерпел неудачу, и копенгагенская интерпретация стала доминирующей.

В 1933 году ученый оставил кафедру теоретической физики Берлинского университета после прихода к власти нацистов, в знак протеста против преследования инакомыслящих и, в частности, против нападения на улице на одного из его ассистентов, еврея по национальности. Из Германии Шредингер отправился в качестве приглашенного профессора в Оксфорд, куда вскоре после его прибытия пришла весть о присуждении ему Нобелевской премии.

В 1936 году, несмотря на дурные предчувствия относительно своего будущего, Шредингер принял предложение и стал профессором Грацкого университета в Австрии, но в 1938 году, после аннексии Австрии Германией, вынужден был оставить и этот пост, бежав в Италию. Приняв приглашение, он переехал затем в Ирландию, где стал профессором теоретической физики Дублинского института фундаментальных исследований и оставался на этом посту семнадцать лет, занимаясь исследованиями по волновой механике, статистике, статистической термодинамике, теории поля и особенно по общей теории относительности.

После войны австрийское правительство пыталось склонить Шредингера вернуться в Австрию, но он отказывался, пока страна была оккупирована советскими войсками. В 1956 году он принял кафедру теоретической физики Венского университета. Это был последний пост, который он занимал в своей жизни.

Всю жизнь он был любителем природы и страстным туристом. Среди своих коллег Шредингер был известен как человек замкнутый, чудаковатый, имевший мало единомышленников. Дирак так описывает прибытие Шредингера на престижный Сольвеевский конгресс в Брюсселе: "Весь его скарб умещался в рюкзаке. Он выглядел как бродяга, и понадобилось довольно долго убеждать портье, прежде чем тот отвел Шредингеру номер в гостинице".

Шредингер глубоко интересовался не только научными, но и философскими аспектами физики, написал в Дублине несколько философских исследований. Размышляя над проблемами приложения физики к биологии, он выдвинул идею молекулярного подхода к изучению генов, изложив ее в книге "Что такое жизнь? Физические аспекты живой клетки" (1944), оказавшей влияние на некоторых биологов, в том числе Фрэнсиса Крика и Мориса Уилкинса. Шредингер опубликовал также томик своих стихов.

Он вышел в отставку в 1958 году, когда ему исполнился семьдесят один год, и умер через три года, 4 января 1961 года, в Вене.

Кроме Нобелевской премии, Шредингер был удостоен многих наград и почестей, в том числе золотой медали Маттеуччи Итальянской национальной академии наук, медали Макса Планка Германского физического общества, и награжден правительством ФРГ орденом "За заслуги". Шредингер был почетным доктором университетов Гента, Дублина и Эдинбурга, состоял членом Папской академии наук, Лондонского королевского общества, Берлинской академии наук, Академии наук СССР, Дублинской академии наук и Мадридской академии наук.

Автор: Самин Д.К.

 Рекомендуем интересные статьи раздела Биографии великих ученых:

▪ Эрстед Ганс. Биография

▪ Зелинский Николай. Биография

▪ Александр Белл. Биография

Смотрите другие статьи раздела Биографии великих ученых.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Токсичность интернета преувеличена 07.01.2026

Социальные сети нередко воспринимаются как арена постоянной агрессии, оскорблений и распространения фейковой информации. Новое исследование Стэнфордского университета показывает, что реальность значительно отличается от популярного представления: интернет гораздо менее токсичен, чем многие пользователи считают. Ученые опросили более тысячи американцев, попросив их оценить долю пользователей соцсетей, которые ведут себя агрессивно или распространяют ненависть. Оказалось, что впечатления людей сильно преувеличивают масштабы проблемы. Например, респонденты считали, что почти половина пользователей Reddit хотя бы раз оставляла оскорбительные комментарии, тогда как фактические данные платформы показывают, что таких людей не более 3%. Аналогичная ситуация наблюдается с дезинформацией. Опрос показал, что большинство участников считали почти половину аудитории Facebook распространителями фейковых новостей, однако статистика говорит об обратном: фактическая доля таких пользователей состав ...>>

Процессоры Ryzen AI 400 07.01.2026

Современные вычисления все больше ориентируются на интеграцию искусственного интеллекта и высокую производительность в компактных устройствах, таких как ноутбуки и мини-ПК. Новая линейка процессоров AMD Ryzen AI 400 демонстрирует, как разработчики объединяют мощные центральные ядра, графику и нейросетевые ускорители в одном чипе, чтобы удовлетворять растущие потребности пользователей в играх, контенте и ИИ-приложениях. AMD представила процессоры серии Gorgon Point, которые включают до 12 ядер Zen 5 и до 24 потоков вычислений. Чипы поддерживают интегрированную графику RDNA 3.5, обеспечивают максимальную тактовую частоту до 5,2 ГГц и имеют энергопотребление от 15 Вт до 54 Вт. Особое внимание уделено NPU, способному обрабатывать до 60 триллионов операций в секунду (TOPS), что делает эти процессоры эффективными для задач с искусственным интеллектом. Конструкция Ryzen AI 400 сочетает ядра Zen 5 и Zen 5c, обеспечивая высокую гибкость и производительность. Несмотря на то, что архитектур ...>>

Женщины лучше распознают признаки болезни по лицу 06.01.2026

Способность распознавать, что кто-то нездоров, часто проявляется интуитивно: бледная кожа, опущенные веки, уставшее выражение лица могут сигнализировать о недомогании. Новое исследование международной группы ученых показало, что женщины в среднем точнее мужчин улавливают такие тонкие невербальные признаки болезни, что может иметь эволюционные и социальные объяснения. В отличие от предыдущих работ, где использовались отредактированные фотографии или имитация больных лиц, ученые решили проверить, насколько люди способны распознавать естественные признаки недомогания. Такой подход позволил оценить реальную чувствительность к изменениям в лицах, возникающим при болезни. В исследовании приняли участие 280 студентов, поровну мужчин и женщин. Участникам предложили оценить 24 фотографии, на которых изображены люди как в здоровом состоянии, так и во время болезни. Это дало возможность сравнить восприятие естественных признаков недомогания в реальных лицах. Для анализа состояния каждого ...>>

Случайная новость из Архива

Чем больше пыли, тем теплее 17.11.2012

Пыль, которая регулярно поднимается над пустынями, вызывает локализованное потепление, намного более сильное, чем предполагали ученые. Это открытие сделали полевые исследователи НАСА, которые в апреле 2008 года разбили лагерь в Чжанъе, засушливой области между китайскими пустынями Такла-Макан и Гоби.

Лагерь ученых представлял собой два небольших жилых вагончика и комплекс оборудования для изучения аэрозолей - взвешенных в воздухе частиц. После развертывания лагеря ученые начали ждать благоприятных условий для измерений. К началу мая небо над лагерем потемнело, и специалисты НАСА смогли измерить поглощение и излучение тепла облаком пыли. Необходимо было узнать: охлаждает пыль локальный участок местности или нагревает, или и то, и другое. Анализ данных показал, что более половины охлаждающего эффекта пыли компенсируется ее согревающим эффектом. Это открытие, недавно опубликованное в Geophysical Research, Atmospheres, может рассказать о влиянии концентрации пыли и влаги на температуру поверхности планеты.

Пыль является лишь одним из многих аэрозолей, но весьма важным. Спутники транслируют на Землю изображения огромных облаков пыли, которые поднимаются над пустынями и движутся на расстояние в тысячи километров. Благодаря исследованию НАСА ученые теперь знают, что облака пыли эффективно поглощают длинноволновое инфракрасное излучение, то есть задерживают тепло, что вызывает локальный нагрев поверхности Земли под пылевым облаком.

По сравнению с аэрозолями, состоящими из микроскопических частиц, например, с дымом, крупные пылинки поглощают ИК-излучение намного лучше. При этом степень поглощения зависит от состава пыли, в частности, кремнезем и глина лучше, чем другие, поглощают длинноволновое излучение.

Измерения показали, что пылевые облака обеспечивают нагрев поверхности на уровне 2,3-20 Вт на квадратный метр. Это сравнимо с обычными облаками (30 Вт на кв. м) и существенно превосходит воздействие парниковых газов - около 2 Вт на квадратный метр. Хотя, надо отметить, потепление из-за парниковых газов происходит в глобальном масштабе, а пылевые облака влияют только на отдельные регионы.

Другие интересные новости:

▪ Оптический кабель Thunderbolt

▪ LTE-рация Motorola TLK110 Wave

▪ Какао - защита от гипертонии

▪ 32-Гбит ReRAM-чип

▪ Электромотоцикл Lightning Strike

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта ВЧ усилители мощности. Подборка статей

▪ статья Объективная реальность, данная нам в ощущении. Крылатое выражение

▪ статья Какую часть общей смертности в мире составляют жертвы военных действий? Подробный ответ

▪ статья Работа с контрольно-кассовым аппаратом. Типовая инструкция по охране труда

▪ статья Электронный балласт с измененной цепью прогрева катодов. Энциклопедия радиоэлектроники и электротехники

▪ статья Таинственный перелет двух карт. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026