Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Квантовая механика. История и суть научного открытия

Важнейшие научные открытия

Справочник / Важнейшие научные открытия

Комментарии к статье Комментарии к статье

Когда прошел восторг первых успехов теории Бора, все вдруг осознали простую истину: схема Бора противоречива. От такого факта некуда было укрыться, и им объясняется тогдашний пессимизм Эйнштейна, равно как и отчаяние Паули.

Физики вновь и вновь убеждались, что электрон при движении в атоме не подчиняется законам электродинамики: он не падает на ядро и даже не излучает, если атом не возбужден. Все это было настолько необычно, что не укладывалось в голове: электрон, который "произошел" от электродинамики, вдруг вышел из-под контроля ее законов. При любой попытке найти логический выход из подобного порочного круга ученые всегда приходили к выводу: атом Бора существовать не может.

Выходило, что движение электрона в атоме подчиняется каким-то другим законам - законам квантовой механики. Квантовая механика - это наука о движении электронов в атоме. Она первоначально так и называлась: атомная механика. Гейзенберг - первый из тех, кому выпало счастье эту науку создавать.

Вернер Карл Гейзенберг (1901–1976) родился в немецком городе Вюрцбурге. В сентябре 1911 года Вернера отдали в престижную гимназию. В 1920 году Гейзенберг поступил в Мюнхенский университет. Окончив его, Вернер был назначен ассистентом профессора Макса Борна в Геттингенском университете. Борн был уверен, что атомный микромир настолько отличается от макромира, описанного классической физикой, что ученым нечего и думать пользоваться при изучении строения атома привычными понятиями о движении и времени, скорости, пространстве и определенном положении частиц. Основа микромира - кванты, которые не следовало пытаться понять или объяснить с наглядных позиций устаревшей классики. Эта радикальная философия нашла горячий отклик в душе его нового ассистента.

Действительно, состояние атомной физики напоминало в это время какое-то нагромождение гипотез. Вот если бы кому-нибудь удалось на опыте доказать, что электрон действительно волна, вернее, и частица и волна. Но таких опытов пока не было. А раз так, то и исходить из одних только предположений, что представляет собой электрон, по мнению педантичного Гейзенберга, было некорректно. А нельзя ли создать теорию, в которой будут только известные экспериментальные данные об атоме, полученные при изучении излучаемого им света? Что можно сказать об этом свете наверняка? Что он имеет такую-то частоту и такую-то интенсивность, не больше...

В июне 1925 года заболевший Гейзенберг уехал отдохнуть на остров Гельголанд в Балтийском море. Отдохнуть ему не удалось - там он вдруг понял неожиданную истину: нельзя представлять себе движение электрона в атоме как движение маленького шарика по траектории. Нельзя, потому что электрон не шарик, а нечто более сложное, и проследить движение этого "нечто" столь же просто, как движение бильярдного шара, нельзя.

Л.Пономарев в своей книге пишет: "Гейзенберг утверждал: уравнения, с помощью которых мы хотим описать движение в атоме, не должны содержать никаких величин, кроме тех, которые можно измерить на опыте. А из опытов следовало, что атом устойчив, состоит из ядра и электронов и может испускать лучи, если его вывести из состояния равновесия. Эти лучи имеют строго определенную длину волны и, если верить Бору, возникают при перескоке электрона с одной стационарной орбиты на другую. При этом схема Бора ничего не говорила о том, что происходит с электроном в момент скачка, так сказать "в полете" между двумя стационарными состояниями. А все, и Гейзенберг в том числе, по привычке добивались ответа именно на этот вопрос. Но в какой-то момент ему стало ясно: электрон не бывает "между" стационарными состояниями, такого свойства у него просто нет!

А что есть? Есть нечто, чему он не знал пока даже названия, но был убежден: оно должно зависеть только от того, куда перешел электрон и откуда".

До того времени физики пытались найти гипотетическую траекторию электрона в атоме, которая непрерывно зависит от времени и которую можно задать рядом чисел, отмечающих положение электрона в определенные моменты времени. Гейзенберг утверждал: такой траектории в атоме нет, а вместо непрерывной кривой есть набор дискретных чисел, значения которых зависят от номеров начального и конечного состояний электрона.

Он представил состояние атома в виде бесконечной шахматной доски, в каждом квадрате которой написаны числа. Естественно, что значения этих чисел зависят от положения квадрата на "атомной доске", то есть от номера строки (начальное состояние) и номера столбца (конечное состояние), на пересечении которых стоит число.

Если известны числа X своеобразной записи "атомной игры", то об атоме известно все необходимое, чтобы предсказать его наблюдаемые свойства: спектр атома, интенсивность его спектральных линий, число и скорость электронов, выбитых из атома ультрафиолетовыми лучами, а также многое другое.

Числа X нельзя назвать координатами электрона в атоме. Они заменяют их, или, как стали говорить позже, представляют их. Но что означают эти слова - на первых порах не понимал и сам Гейзенберг. Однако тут же с помощью Макса Борна (1882–1970) и Паскуаля Иордана удалось понять, что таблица чисел - не просто таблица, а матрица.

"Матрицы, - замечает Л.И.Пономарев, - это таблицы величин, для которых существуют свои строго определенные операции сложения и умножения. В частности, результат перемножения двух матриц зависит от порядка, в котором они перемножаются. Это правило может показаться странным и подозрительным, но никакого произвола в себе не содержит. По существу, именно это правило отличает матрицы от других величин. Менять его по своей прихоти мы не вправе - в математике тоже есть свои незыблемые законы. Законы эти, независимые от физики и всех других наук, закрепляют на языке символов все мыслимые логические связи в природе. Причем заранее неизвестно, реализуются ли все эти связи в действительности.

Конечно, математики о матрицах знали задолго до Гейзенберга и умели с ними работать. Однако для всех было полной неожиданностью, что эти странные объекты с непривычными свойствами соответствуют чему-то реальному в мире атомных явлений. Заслуга Гейзенберга и Борна в том и состоит, что они преодолели психологический барьер, нашли соответствие между свойствами матриц и особенностями движения электронов в атоме и тем самым основали новую, атомную, квантовую, матричную механику.

Атомную - потому, что она описывает движение электронов в атоме. Квантовую - ибо главную роль в этом описании играет понятие кванта действия. Матричную - поскольку математический аппарат, необходимый для этого, - матрицы".

В новой механике каждой характеристике электрона: координате, импульсу, энергии - соответствовали соответствующие матрицы. Потом уже для них записывали уравнения движения, известные из классической механики.

Гейзенберг установил даже нечто большее: он выяснил, что квантово-механические матрицы координаты и импульса - это не вообще матрицы, а только те из них, которые подчиняются коммутационному (или перестановочному) соотношению.

В новой механике это перестановочное соотношение играло точно такую же роль, как условие квантования Бора в старой механике. И точно так же, как условия Бора выделяли стационарные орбиты из набора всех возможных, коммутационное соотношение Гейзенберга выбирает из множества всех матриц только квантово-механические.

Не случайно, что в обоих случаях - и в условиях квантования Бора, и в уравнениях Гейзенберга - необходимо присутствует постоянная Планка. Постоянная Планка непременно входит во все уравнения квантовой механики, и по этому признаку их можно безошибочно отличить от всех других уравнений.

Новые уравнения, которые нашел Гейзенберг, были непохожи ни на уравнения механики, ни на уравнения электродинамики. С точки зрения этих уравнений состояние атома полностью задано, если известны матрицы координаты или импульса. Причем структура этих матриц такова, что в невозбужденном состоянии атом не излучает. Согласно Гейзенбергу, движение - это не перемещение электрона-шарика по какой-либо траектории вокруг ядра.

Движение - это изменение состояния системы во времени, которое описывает матрицы координаты и импульса.

Вместе с вопросами о характере движения электрона в атоме сам собой отпал и вопрос об устойчивости атома. С новой точки зрения в невозбужденном атоме электрон покоится, а потому и не должен излучать.

Теория Гейзенберга была внутренне непротиворечива, чего схеме Бора так недоставало. Вместе с тем она приводила к таким же результатам, что и правила квантования Бора. Кроме того, с ее помощью удалось, наконец, показать, что гипотеза Планка о квантах излучения - это простое и естественное следствие новой механики.

Надо сказать, что матричная механика появилась весьма кстати. Идеи Гейзенберга подхватили другие физики и скоро, по выражению Бора, она приобрела "вид, который по своей логической завершенности и общности мог конкурировать с классической механикой".

Впрочем, было в работе Гейзенберга и одно удручающее обстоятельство. По его словам, ему никак не удавалось вывести из новой теории простой спектр водорода. И каково было его удивление, когда некоторое время спустя после опубликования его работы, как он написал, "Паули преподнес мне сюрприз: законченную квантовую механику атома водорода. Мой ответ от 3 ноября начинался словами: "Едва ли нужно писать, как сильно я радуюсь новой теории атома водорода и насколько велико мое удивление, что Вы так быстро смогли ее разработать"".

Появление матричной механики Гейзенберга физики встретили с огромным облегчением: "Механика Гейзенберга снова вернула мне радость жизни и надежду. Хотя она и не дает решения загадки, но я верю, что теперь снова можно продвигаться вперед", - писал Паули 9 октября 1925 года.

Свою веру он вскоре сам же и оправдал. Применив новую механику к атому водорода, он получил те же формулы, что и Нильс Бор на основе своих постулатов. Конечно, при этом возникли новые трудности, однако это уже были трудности роста, а не безнадежность тупика.

Автор: Самин Д.К.

 Рекомендуем интересные статьи раздела Важнейшие научные открытия:

▪ Электродинамика

▪ Биосфера

▪ Хромосомная теория наследственности

Смотрите другие статьи раздела Важнейшие научные открытия.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Стерильного нейтрино не существует 15.01.2026

В физике элементарных частиц поиск новых, пока не обнаруженных объектов играет ключевую роль в понимании устройства Вселенной. Иногда такие поиски приводят к громким открытиям, а иногда - к не менее важным отрицательным результатам, которые позволяют отбросить неверные направления. Именно к таким случаям относится недавний вывод ученых о судьбе стерильного нейтрино - одной из самых интригующих гипотетических частиц последних десятилетий. Исследователи из американской лаборатории Fermilab официально сообщили, что им не удалось найти доказательства существования стерильного нейтрино. К такому выводу пришла команда эксперимента MicroBooNE после многолетнего анализа столкновений нейтрино, которые ранее рассматривались как возможный намек на существование четвертого типа этих частиц. Предполагалось, что стерильное нейтрино взаимодействует с материей исключительно через гравитацию, что делало его крайне трудным объектом для обнаружения. В рамках современной физики нейтрино известны в т ...>>

Беспроводные наушники и колонки Fender 15.01.2026

Музыкальная индустрия постепенно адаптируется к цифровым технологиям, и известный производитель музыкальных инструментов Fender расширяет свое присутствие за пределы гитар и усилителей, представляя современные решения для прослушивания музыки. Новые беспроводные наушники и Bluetooth-колонки Fender объединяют богатый звук, модульность и удобство использования как для дома, так и для профессиональной работы. Флагманской новинкой стали наушники Fender Mix, отличающиеся модульной конструкцией. Динамики подключаются к оголовью через порт USB Type-C и могут быть сняты вместе с амбушюрами, что облегчает уход и транспортировку. Один из динамиков оснащен встроенным адаптером USB Type-C для подключения к источнику звука без потерь, поддерживая кодеки LDHC и Fire, а также функцию Auracast. На другом динамике размещен съемный аккумулятор, который обеспечивает до 100 часов работы без активного шумоподавления; при включении ANC время работы сокращается до 52 часов. Наушники доступны по цене $299 ...>>

Польза белкового завтрака 14.01.2026

Правильное питание по утрам играет ключевую роль в поддержании здоровья и контроле веса. Многочисленные исследования подтверждают, что состав завтрака может влиять на аппетит в течение всего дня и качество употребляемой пищи. Австралийские ученые провели масштабный эксперимент, который показал, что употребление белковой пищи с утра помогает дольше чувствовать сытость и предотвращает переедание. В исследовании участвовали более 9 тысяч человек среднего возраста 46 лет. В период с 2011 по 2012 год специалисты анализировали рационы респондентов, оценивая долю основных макронутриентов. В среднем участники потребляли 43% углеводов, 31% жиров, 18% белков, 2% клетчатки и 4% алкоголя. Такой рацион позволил ученым проследить взаимосвязь между утренним приемом пищи и пищевым поведением в течение дня. Выяснилось, что участники, чей завтрак содержал недостаточное количество белка, ощущали повышенный аппетит в течение дня. Они ели больше, чем необходимо, и часто выбирали продукты с высоким со ...>>

Случайная новость из Архива

Искусственный интеллект для управления инопланетными базами 29.11.2018

Группа инженеров из TRACLabs Inc работают над созданием системы мониторинга планетарных баз, которая в некотором смысле будет напоминать печально известного HAL 9000 из фильма Стэнли Кубрика "Космическая одиссея 2001 года".

Новый искусственный интеллект по управлению внеземными базами называется CASE (cognitive architecture for space agents - когнитивная архитектура для космических средств)ю

Система предназначена для управления базой на другой планете, скажем, Марсе. Она должна заботиться о повседневных, но критически важных задачах, таких как поддержание уровня кислорода и избавление от отходов. Такая система должна знать, что делать и как делать, выполняя задачи с помощью робоманипуляторов. Именно поэтому CASE спроектирован как трехслойная система. Первый слой отвечает за контроль "железа", вроде систем подачи энергии, жизнеобеспечения и так далее.

Второй слой отвечает за управление программами, контролирующими "железо". А вот третий слой самый любопытный. Он отвечает за изобретение решений в ответ на появляющиеся проблемы, например, при разгерметизации одного модуля надо будет срочно изолировать его от остальных. Более того, новый ИИ будет иметь так называемую онтологическую систему - то есть по профилю работы он должен себя осознавать и выносить самостоятельные решения, сравнивая данные с сенсоров, предыдущий усвоенный опыт и информацию, полученную от людей. Именно поэтому система будет общаться с людьми именно так, как изображено в фильме. То есть вести диалог.

Ученые уже выстроили прототип планетарной базы в виртуальной реальности, и CASE пока смог управлять ей в течение четырех часов. Так что предстоит много работы. Но в конце концов у исследователей в запасе есть минимум десять лет, ведь до Марса люди доберутся совсем нескоро.

Другие интересные новости:

▪ Магнетары сложнее, чем считалось

▪ Интернет-автомат

▪ Клеточное деление воссоздано снаружи клетки

▪ Электрический парус

▪ Маска для лица с микрофоном и динамиками

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Защита электроаппаратуры. Подборка статей

▪ статья И вновь продолжается бой. Крылатое выражение

▪ Какие были периоды в истории развития человечества? Подробный ответ

▪ статья Заведующий жилым корпусом пансионата (гостиницы). Должностная инструкция

▪ статья Логопериодическая антенна. Энциклопедия радиоэлектроники и электротехники

▪ статья SMD-компоненты. Корпуса компонентов для поверхностного монтажа. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026