Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Ферма Пьер. Биография ученого

Биографии великих ученых

Справочник / Биографии великих ученых

Комментарии к статье Комментарии к статье

Ферма Пьер
Пьер Ферма
(1601-1665).

В одном из некрологов Пьеру Ферма говорилось: "Это был один из наиболее замечательных умов нашего века, такой универсальный гений и такой разносторонний, что если бы все ученые не воздали должное его необыкновенным заслугам, то трудно было бы поверить всем вещам, которые нужно о нем сказать, чтобы ничего не упустить в нашем похвальном слове".

К сожалению, о жизни великого ученого известно не так много. Пьер де Ферма родился на юге Франции в небольшом городке Бомон-де-Ломань, где его отец - Доминик Ферма - был "вторым консулом", т. е. чем-то вроде помощника мэра. Метрическая запись о его крещении от 20 августа 1601 года гласит: "Пьер, сын Доминика Ферма, буржуа и второго консула города Бомона". Мать Пьера, Клер де Лонг, происходила из семьи юристов.

Доминик Ферма дал своему сыну очень солидное образование. В колледже родного города Пьер приобрел хорошее знание языков: латинского, греческого, испанского, итальянского. Впоследствии он писал стихи на латинском, французском и испанском языках "с таким изяществом, как если бы он жил во времена Августа и провел большую часть своей жизни при дворе Франции или Мадрида".

Ферма славился как тонкий знаток античности, к нему обращались за консультацией по поводу трудных мест при изданиях греческих классиков. Из древних писателей он комментировал Атенея, Полюнуса, Синезуса, Теона Смирнского и Фронтина, исправил текст Секста Эмпирика. По общему мнению, он мог бы составить себе имя в области греческой филологии.

Но Ферма направил всю силу своего гения на математические исследования. И все же математика не стала его профессией. Ученые его времени не имели возможности посвятить себя целиком любимой науке.

Ферма избирает юриспруденцию. Степень бакалавра была ему присуждена в Орлеане. С 1630 года Ферма переселяется в Тулузу, где получает место советника в парламенте (т. е. суде). О его юридической деятельности говорится в "похвальном слове", что он выполнял ее "с большой добросовестностью и таким умением, что он славился как один из лучших юристов своего времени".

В 1631 году Ферма женился на своей дальней родственнице с материнской стороны - Луизе де Лонг. У Пьера и Луизы было пятеро детей, из которых старший, Самюэль, стал поэтом и ученым. Ему мы обязаны первым собранием сочинений Пьера Ферма, вышедшим в 1679 году. К сожалению, Самюэль Ферма не оставил никаких воспоминаний об отце.

При жизни Ферма о его математических работах стало известно главным образом через посредство обширной переписки, которую он вел с другими учеными. Собрание сочинений, которое он неоднократно пытался написать, так и не было им создано. Да это и неудивительно при той напряженной работе в суде, которую ему пришлось выполнять. Ни одно из его сочинений не было опубликовано при жизни. Однако нескольким трактатам он придал вполне законченный вид, и они стали известны в рукописи большинству современных ему ученых. Кроме этих трактатов осталась еще обширная и чрезвычайно интересная его переписка. В XVII веке, когда еще не было специальных научных журналов, переписка между учеными играла особую роль. В ней ставились задачи, сообщалось о методах их решения, обсуждались острые научные вопросы.

Корреспондентами Ферма были крупнейшие ученые его времени: Декарт, Этьен и Блез Паскали, де Бесси, Гюйгенс, Торричелли, Валлис. Письма посылались либо непосредственно корреспонденту, либо в Париж аббату Мерсенну (соученику Декарта по колледжу); последний размножал их и посылал тем математикам, которые занимались аналогичными вопросами. Но письма ведь почти никогда не бывают только короткими математическими мемуарами. В них проскальзывают живые чувства авторов, которые помогают воссоздать их образы, узнать об их характере и темпераменте. Обычно письма Ферма были проникнуты дружелюбием.

Одной из первых математических работ Ферма было восстановление двух утерянных книг Аполлония "О плоских местах".

Крупную заслугу Ферма перед наукой видят, обыкновенно, во введении им бесконечно малой величины в аналитическую геометрию, подобно тому, как это, несколько ранее, было сделано Кеплером в отношении геометрии древних. Он совершил этот важный шаг в своих относящихся к 1629 году работах о наибольших и наименьших величинах, - работах, открывших собою тот ряд исследований Ферма, который является одним из самых крупных звеньев в истории развития не только высшего анализа вообще, но и анализа бесконечно малых в частности.

В конце двадцатых годов Ферма открыл методы нахождения экстремумов и касательных, которые, с современной точки зрения, сводятся к отысканию производной. В 1636 году законченное изложение метода было передано Мерсенну и с ним могли познакомиться все желающие.

В 1637-1638 годах по поводу "Метода отыскания максимумов и минимумов" у Ферма возникла бурная полемика с Декартом. Последний не понял метода и подверг его резкой и несправедливой критике. В одном из писем Декарт утверждал даже, что метод Ферма "содержит в себе паралогизм". В июне 1638 года Ферма послал Мерсенну для пересылки Декарту новое, более подробное изложение своего метода. Письмо его сдержанно, но не без внутренней иронии. Он пишет: "Таким образом, обнаруживается, что либо я плохо объяснил, либо г. Декарт плохо понял мое латинское сочинение. Я все же пошлю ему то, что уже написал, и он, несомненно, найдет там вещи, которые помогут ему отказаться от мнения, будто я нашел этот метод случайно и его подлинные основания мне неизвестны". Ферма ни разу не изменяет своему спокойному тону. Он чувствует свое глубокое превосходство как математика, поэтому не входит в мелочную полемику, а терпеливо старается растолковать свой метод, как это сделал бы учитель ученику.

До Ферма систематические методы вычисления площадей разработал итальянский ученый Кавальери. Но уже в 1642 году Ферма открыл метод вычисления площадей, ограниченных любыми "параболами" и любыми "гиперболами". Им было показано, что площадь неограниченной фигуры может быть конечной.

Ферма одним из первых занялся задачей спрямления кривых, т. е. вычислением длины их дуг. Он сумел свести эту задачу к вычислению некоторых площадей.

Таким образом, понятие "площади" у Ферма приобретало уже весьма абстрактный характер. К определению площадей сводились задачи на спрямление кривых, вычисление сложных площадей он сводил с помощью подстановок к вычислению более простых площадей. Оставался только шаг, чтобы перейти от площади к еще более абстрактному понятию "интеграл".

Дальнейший успех методов определения "площадей", с одной стороны, и "методов касательных и экстремумов" - с другой, состоял в установлении взаимной связи этих методов. Есть указания на то, что Ферма уже видел эту связь, знал, что "задачи на площади" и "задачи на касательные" являются взаимно обратными. Но он нигде не развил свое открытие сколько-нибудь подробно. Поэтому честь его по праву приписывается Барроу, Ньютону и Лейбницу, которым это открытие и позволило создать дифференциальное и интегральное исчисления.

Несмотря на отсутствие доказательств (из них дошло только одно), трудно переоценить значение творчества Ферма в области теории чисел. Ему одному удалось выделить из хаоса задач и частных вопросов, сразу же возникающих перед исследователем при изучении свойств целых чисел, основные проблемы, которые стали центральными для всей классической теории чисел. Ему же принадлежит открытие мощного общего метода для доказательства теоретико-числовых предложений - так называемого метода неопределенного или бесконечного спуска, о котором будет сказано ниже. Поэтому Ферма по праву может считаться основоположником теории чисел.

В письме к де Бесси от 18 октября 1640 года Ферма высказал следующее утверждение: если число a не делится на простое число p, то существует такой показатель k, что a-1 делится на p, причем k является делителем p-1. Это утверждение получило название малой теоремы Ферма. Оно является основным во всей элементарной теории чисел. Эйлер дал этой теореме несколько различных доказательств.

В задаче второй книги своей "Арифметики" Диофант поставил задачу представить данный квадрат в виде суммы двух рациональных квадратов. На полях, против этой задачи, Ферма написал:

"Наоборот, невозможно разложить ни куб на два куба, ни биквадрат на два биквадрата и вообще ни в какую степень, большую квадрата, на две степени с тем же показателем. Я открыл этому поистине чудесное доказательство, но эти поля для него слишком узки". Это и есть знаменитая Великая теорема.

Теорема эта имела удивительную судьбу. В прошлом веке ее исследования привели к построению наиболее тонких и прекрасных теорий, относящихся к арифметике алгебраических чисел. Без преувеличения можно сказать, что она сыграла в развитии теории чисел не меньшую роль, чем задача решения уравнений в радикалах. С той только разницей, что последняя уже решена Галуа, а Великая теорема до сих пор побуждает математиков к исследованиям.

С другой стороны, простота формулировки этой теоремы и загадочные слова о "чудесном доказательстве" ее привели к широкой популярности теоремы среди нематематиков и к образованию целой корпорации "ферматистов", у которых, по словам Дэвенпорта, "смелость значительно превосходит их математические способности". Поэтому Великая теорема стоит на первом месте по числу данных ей неверных доказательств.

Сам Ферма оставил доказательство Великой теоремы для четвертых степеней. Здесь он применил "метод неопределенного или бесконечного спуска", который он описывал в своем письме к Каркави (август 1659 года) следующим образом:

"Если бы существовал некоторый прямоугольный треугольник в целых числах, который имел бы площадь, равную квадрату, то существовал бы другой треугольник, меньший этого, который обладал бы тем же свойством. Если бы существовал второй, меньший первого, который имел бы то же свойство, то существовал бы в силу подобного рассуждения третий, меньший второго, который имел бы то же свойство, и, наконец, четвертый, пятый, спускаясь до бесконечности. Но если задано число, то не существует бесконечности по спуску меньших его (я все время подразумеваю целые числа). Откуда заключают, что не существует никакого прямоугольного треугольника с квадратной площадью". Именно этим методом были доказаны многие предложения теории чисел, и, в частности, с его помощью Эйлер доказал Великую теорему для n=4 (способом, несколько отличным от способа Ферма), а спустя 20 лет и для n=3.

В прошлом веке Куммер, занимаясь Великой теоремой Ферма, построил арифметику для целых алгебраических чисел определенного вида. Это позволило ему доказать Великую теорему для некоторого класса простых показателей n. В настоящее время справедливость Великой теоремы проверена для всех показателей n меньше 5500.

Отметим также, что Великая теорема связана не только с алгебраической теорией чисел, но и с алгебраической геометрией, которая сейчас интенсивно развивается.

У Ферма есть много других достижений. Он первым пришел к идее координат и создал аналитическую геометрию. Он занимался также задачами теории вероятностей. Но Ферма не ограничивался одной только математикой, он занимался и физикой, где ему принадлежит открытие закона распространения света в средах. Ферма исходил из предположения, что свет пробегает путь от какой-либо точки в одной среде до некоторой точки в другой среде в наикратчайшее время. Применив свой метод максимумов и минимумов, он нашел путь света и установил, в частности, закон преломления света. При этом Ферма высказал следующий общий принцип: "Природа всегда действует наиболее короткими путями", который может считать предвосхищением принципа наименьшего действия Мопертюи - Эйлера.

Одно из последних писем ученого к Каркави получило название "завещание Ферма". Вот его заключительные строки:

"Быть может, потомство будет признательно мне за то, что я показал ему, что древние не все знали, и это может проникнуть в сознание тех, которые придут после меня для передачи факела сыновьям, как говорит великий канцлер Англии, следуя чувствам которого, я добавлю: "Многие будут приходить и уходить, а наука обогащается"".

Пьер Ферма скончался 12 января 1665 года во время одной из деловых поездок.

Автор: Самин Д.К.

 Рекомендуем интересные статьи раздела Биографии великих ученых:

▪ Левенгук Антони ван. Биография

▪ Лоренц Гендрик. Биография

▪ Шарль де Кулон. Биография

Смотрите другие статьи раздела Биографии великих ученых.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Совместный просмотр телевизора с родителями полезен маленьким детям 13.10.2024

Родители часто беспокоятся о том, сколько времени их дети проводят перед экранами телевизоров и гаджетов. Однако новое исследование ученых из Университета Портсмута, проведенное в сотрудничестве с французскими коллегами, показывает, что телевидение может быть полезным для когнитивного развития малышей, если они смотрят его вместе с родителями. Особенно это касается детей в возрасте до двух лет, когда закладываются основы языка и мышления. Исследователи проанализировали 478 научных работ, опубликованных за последние 20 лет, чтобы изучить влияние пассивного использования экранов на развитие интеллекта детей. Они обратили внимание на то, что экранное время может быть как вредным, так и полезным для самых маленьких, и ключевую роль в этом играют условия, в которых дети смотрят телевизор или пользуются гаджетами. Результаты показали, что пассивный просмотр телевизора без участия взрослых может негативно сказываться на развитии речи, когнитивных функций и даже на умении детей играть. О ...>>

Съедобный транзистор из зубной пасты 13.10.2024

Современная медицина и технологии все чаще пересекаются, создавая уникальные разработки, которые могут изменить подход к лечению и диагностике. Одним из таких инновационных открытий стал съедобный транзистор, созданный учеными из Италии и Сербии. В основе этого устройства лежит необычный материал - фталоцианин меди (CuPc), который также используется в отбеливающей зубной пасте. Однако, его применение в электронике может открыть новые возможности для безопасных медицинских устройств, которые можно проглатывать для исследования организма. Фталоцианин меди (CuPc) уже давно известен как органический полупроводник, а его стабильность и безопасность делают его идеальным кандидатом для использования в электронике, предназначенной для взаимодействия с человеческим телом. Исследователи выяснили, что этот материал может работать в составе управляемого электролитом транзистора при низком напряжении - менее 1 В. Важно отметить, что CuPc абсолютно безопасен для потребления человеком, что делает ...>>

Вертикальная ферма для промышленного выращивания клубники 12.10.2024

В последние годы сельское хозяйство все активнее внедряет инновационные методы для увеличения урожайности и уменьшения нагрузки на природные ресурсы. Одним из самых впечатляющих примеров этого стал запуск первой в мире вертикальной фермы для промышленного выращивания клубники в штате Виргиния, США. Этот проект не только меняет представление о том, как можно выращивать ягоды, но и задает новый стандарт в области устойчивого агробизнеса. Ферма занимает всего 0,4 гектара, но использует уникальные 30-метровые вертикальные башни для максимальной эффективности. Благодаря такой вертикальной системе выращивания ферма производит более 1,8 миллиона килограммов клубники в год. Для сравнения, для достижения такого же объема продукции в традиционном сельском хозяйстве потребовались бы значительно большие площади и водные ресурсы. Одним из главных преимуществ фермы является ее способность обеспечивать стабильные урожаи круглый год, независимо от погодных условий и сезонов. Это достигается за с ...>>

Случайная новость из Архива

В гостинице обслужат роботы 12.02.2015

Сначала в банках, а теперь и в отелях Страны восходящего солнца планируется частично заменить персонал роботизированными механизмами, которые смогут обслуживать клиентов не хуже своих биологических аналогов. Новый техно-отель Henn-na откроют в японской префектуре Нагасаки. В штат работников небольшой гостиницы попадут 10 роботов, три из которых будут иметь предельно похожую на человеческую внешность.

Задачей устройств-гуманоидов станет регистрация посетителей, поэтому встретить их удастся сразу у приемной стойки. Разработанные специалистами компании Kokoro данные механизмы получили название "actroids". Они способны общаться с посетителями гостиницы за счет возможности распознавания голоса, языка тела и установки с собеседником зрительного контакта при помощи соответствующих датчиков и камер.

Далее промышленный манипулятор, адаптированный для работы в качестве грузчика, поможет доставить ваш багаж. Более простые модели роботов смогут осуществлять уборку номеров, готовить вам кофе и выполнять определенные поручения.

Не обошлось и без "умных" и самых технологичных систем непосредственно в самих номерах. Открытие двери без ключа происходит за счет распознавания лиц посетителей гостиницы. Настройка режима работы климатического оборудования происходит автоматически на основании текущих показателях температуры вашего тела, которая считывается специальными датчиками.

Сам отель Henn-na представляет собой небольшое двухэтажное здание всего на 72 номера. Учитывая его необычную роботизированную составляющую, заказать комнату в "сезон" здесь будет не так уж и просто. Владельцы гостиницы планируют организовывать специальные аукционы, чтобы каждый имел равные шансы забронировать номер. Так, к примеру, цена на одноместный номер стартует с отметки $60 за ночь, а за самый комфортабельный трехместный попросят от $153.

Гостиница с роботами, основной "фишкой" которых является быстрая регистрация клиентов, откроется в 2016 году. Однако пока что авторы проекта не готовы полностью положиться на бездушные машины, поэтому на каждого из десяти устройств придется по одному живому сотруднику. Тем не менее, владельцы Henn-na уверены, что в будущем автоматизированный персонал не просто превратится в способ обратить на себя внимание клиентов и привлечь дополнительных посетителей. Роботам под силу выполнять до 90 % всех ключевых операций в гостиницах.

Если Henn-na оправдает ожидания своих владельцев, то они готовы построить еще тысячу подобных отелей по всему миру.

Другие интересные новости:

▪ Автомобиль на сыворотке

▪ Робот-археолог

▪ Обнаружен пятый тип распада бозона Хиггса на другие элементарные частицы

▪ Лазер величиной с вирусную частицу

▪ Препарат для стимуляции роста новых зубов

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Гирлянды. Подборка статей

▪ статья Утром - деньги, вечером - стулья. Крылатое выражение

▪ статья Почему птицы поют? Подробный ответ

▪ статья Участковый врач-терапевт цеховой. Должностная инструкция

▪ статья Мерцающий цветок. Энциклопедия радиоэлектроники и электротехники

▪ статья Расширение возможностей щупа-индикатора. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024