Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Развитие систем объемного звучания - от монофонии к 3D

Искусство аудио

Справочник / Искусство аудио

Комментарии к статье Комментарии к статье

В настоящее время двухканальная стереофония стала уже классическим способом передачи и воспроизведения звука. Целью стереофонического звуковоспроизведения является максимально точная передача звукового образа. Локализация звука при этом является лишь средством, позволяющим получить более богатое и естественное звучание. Однако передача пространственной информации наиболее распространенными "классическими" двухканальными системами имеет ряд недостатков, что побуждает конструкторов к созданию различных систем объемного звучания.

Слушатель, находящийся в концертном зале слышит не только прямой звук, исходящий от отдельных инструментов оркестра, но и приходящий с различных направлений (в том числе и сзади) отраженный от стен и потолка помещения рассеянный (диффузный) звук, который создает эффект пространства и дорисовывает общее впечатление. Запаздывание, с которым диффузный звук достигает ушей слушателя, и его спектральный состав зависят от размера и акустических свойств помещения. При двухканальной передаче информация, создаваемая диффузным звуком, в значительной степени теряется, а в случае студийной записи может отсутствовать изначально.

Человеческое ухо лучше всего локализует источники звука в горизонтальной плоскости. При этом звуки приходящие сзади, при отсутствии дополнительной информации локализуются хуже. Зрение, в том числе и периферийное, является основным чувством определения местоположения объектов, поэтому без зрительной информации возможность оценки положения звука в вертикальной плоскости и его удаленности от нас слаба и достаточно индивидуальна. Отчасти это можно объяснить индивидуальными анатомическими особенностями ушных раковин. При воспроизведении записей зрительная информация отсутствует, поэтому любая звуковая технология для массового рынка, претендующая на "объемное звучание", вынуждена создавать нечто усредненное и заведомо компромиссное.

Для воспроизведения или синтезирования "эффекта зала" можно использовать множество способов. Еще в середине 50-х годов фирмами Philips, Grundig, Telefunken были опробованы системы трехмерного воспроизведения 3D и Raumton. Передача звука была монофонической, но дополнительные громкоговорители (обычно встроенные, реже - выносные), излучающие звук вбок или вверх, создавали за счет отраженного от стен и потолка звука впечатление большого пространства. Поскольку задержка эхо-сигнала в бытовых помещениях достаточно мала, для ее увеличения позднее использовались пружинные ревербераторы в канале усиления дополнительных сигналов. Эти системы ввиду значительной для того времени технической сложности продержались на рынке недолго и быстро сошли со сцены.

В дальнейшем для передачи диффузного звука были разработаны амбиофонические системы, нашедшие применение, главным образом, в кино. Дополнительный канал (или каналы) для передачи диффузного звука в таких системах имеют меньшую мощность, чем основные, а их частотный диапазон соответствует полосе частот диффузного сигнала (примерно 300...5000 Гц). Излучение дополнительных динамиков должно быть рассеянным, для чего они направлены на стены или потолок помещения прослушивания.

Развитие систем объемного звучания - от монофонии к 3D

Сложность стандартизации и технические проблемы с записью и передачей сигналов трех, четырех и более каналов привели к тому, что основной системой записи и передачи звука на долгие годы стала двухканальная стереофония. Но попытки создания систем объемного звучания не прекращались. Развитием амбиофонии стала квадрафония (четырехканальное звуковоспроизведение), пик популярности которой пришелся на первую половину 70-х годов. В отличие от амбиофонической системы здесь все каналы воспроизведения звука оборудованы равноценно. Дискретная(полная) квадрафония, обеспечивающая максимальный эффект присутствия, требует четырех каналов передачи звука и в силу этого оказалась несовместимой с существовавшими в тот момент техническими средствами звукозаписи и радиовещания.

Развитие систем объемного звучания - от монофонии к 3D

Для преодоления этого препятствия было создано несколько систем матричной квадрафонии (по терминологии того времени - квазиквадрафонии), в которых исходные сигналы четырех каналов матрицировались для передачи по двум каналам, а при воспроизведения исходные сигналы восстанавливались путем суммарно-разностных преобразований, причем без декодера можно было воспроизводить обычный стереосигнал. Поскольку ни одна из этих систем не была ни полноценно квадрафонической, ни полностью совместимой с двухканальной стереофонией из-за большого проникновения сигналов из канала в канал, практическое их применение было ограниченным и интерес к ним быстро угас.

Развитие систем объемного звучания - от монофонии к 3D

В "войне стандартов" квадрафонических систем победителей не было, идея благополучно скончалась, принципы позабылись, а термин остался. Поэтому сейчас мало кого смущает тот факт, что "нечто", имеющее четыре канала усиления и четыре колонки гордо именуется "квадрафонической системой". Однако это в корне неправильно, поскольку источник сигнала остается двухканальным, а сигналы фронтальных и тыловых каналов при таком построении системы отличаются друг от друга только уровнем, то есть используется принцип панорамирования.

Панорамирование при производстве стереозаписей широко применялось уже с середины 50-х годов для расположения монофонических звуковых сигналов "слева/справа/в середине" звукового поля. При панорамировании не оказывается никакого воздействия на частоту и фазу сигнала, изменяется только уровень монофонического сигнала, подводимого к каждому из стереоканалов. Панорамирование на несколько каналов (в случае многоканальных записей) осуществляется аналогично. Однако при определении направления на источник звука наш слуховой аппарат использует не только разность интенсивности звуковых сигналов, но и фазовый сдвиг между ними, причем влияние фазового сдвига на точность локализации источника звука наиболее ярко выражено в области частот приблизительно от 500 до 3000 Гц. (Опять диапазон частот диффузного звука!).

Поэтому простое панорамирование не обеспечивает нужной достоверности звучания. Стереоэффекты("бегающий звук", привязка звука "слева-справа" и т.д.) первых стереозаписей достаточно быстро приелись. Поэтому лучшие записи электронных инструментов в студии в 60-е годы проводились с использованием микрофонной техники, что объясняет "живой" характер звучания: Внедрение многоканальной полностью электронной (без использования микрофонов) записи инструментов с последующим сведением, облегчив работу звукорежиссера, одновременно уничтожило атмосферу зала. В последующем этот факт стал учитываться при проведении студийных записей, хотя полного возврата к микрофонной технике не произошло.

При использовании двухканальной схемы воспроизведения основная зона эффективного расположения кажущихся источников звука (КИЗ) находится спереди от слушателя и покрывает пространство порядка 180 градусов в горизонтальной плоскости. Два фронтальных канала не в состоянии адекватно воспроизвести звуки, источники которых в реальности расположены сзади и в вертикальной плоскости, если нет поддержки в виде дополнительных сигналов. Применение тыловых акустических систем в сочетании с панорамированием звука хорошо справляется с расположением источников звука спереди и сзади от слушателя и слабее с боковым расположением. Однако само по себе панорамирование звука никогда не сможет обеспечить приемлемое позиционирования источников звука в вертикальной плоскости.

В ходе разработки матричных систем выяснилось, что значительная часть пространственной информации содержится в разностном сигнале (сигнале стереоинформации), который можно подать на громкоговорители тыловых каналов или в чистом виде, или в смеси с некоторой долей фронтальных сигналов. В простейшем случае для этого даже не нужны дополнительные каналы усиления, а матрицирование сигналов можно провести на выходе усилителя:

Развитие систем объемного звучания - от монофонии к 3D

Так появились на свет несколько псевдоквадрафонических систем, полностью вытеснивших "истинных арийцев" с рынка в середине 70-х. Они отличались друг от друга только способами получения разностного сигнала. Впрочем, их триумф тоже был недолгим, что объяснялось недостатками носителя сигнала - винилового диска и магнитной ленты. Некоррелированные шумы левого и правого каналов не вычитались, что в сочетании с относительно невысоким уровнем разностного сигнала сильно ухудшало отношение сигнал/шум в тыловых каналах.

Другой, не менее существенный недостаток подобных систем - отсутствие зависимости уровня тылового сигнала от характера фонограммы. При малом уровне тылового сигнала пространственный эффект мало заметен, при увеличении уровня появляется разрыв звуковой сцены и перемещение ее фрагментов назад (эффект "окружения оркестром", не соответствующий действительности).

При воспроизведении "живых" записей (имеющих естественное распределение суммарных, разностных и фазовых составляющих) этот недостаток проявлялся незначительно, но на большинстве студийных фонограмм тыловые каналы вносили значительные ошибки в положение КИЗ. Для устранения этого недостатка в ранних системах объемного звучания пытались применить автоматическое панорамирование. Управляющие сигналы получали из уровня пространственной информации - возрастание уровня разностных сигналов приводило к увеличению усиления в тыловых каналах. Однако принятая модель панорамирования была очень грубой, в результате чего ошибки регулирования экспандера приводили к хаотическому изменению уровня тыловых сигналов (эффект "тяжелого дыхания").

Интерес к системам объемного звучания вновь возник с появлением цифровых носителей информации, уровень собственных шумов которых пренебрежимо мал и даже аналоговая обработка сигнала практически не ухудшит динамический диапазон системы. Развитие цифровых методов обработки сигнала привело к созданию цифровых звуковых процессоров (Digital Sound Processor - DSP).

Разработанные первоначально для систем "домашнего театра" процессоры объемного звучания в последнее время начали активно использоваться и в автомобильных аудиосистемах. Их применение позволяет значительно улучшить звучание в салоне автомобиля, поэтому они выпускаются не только в виде отдельных DSP-устройств, но и входят в состав относительно недорогих магнитол. Настройки процессоров позволяют выбрать наиболее оптимальные параметры для выбранного места прослушивания.

Существует ряд методов, позволяющих аппаратуре воспроизводить звук, локализуемый в пространстве, при ограниченном количестве акустических систем. Разные методы реализации имеют сильные и слабые стороны, поэтому важно понимать принципиальные различия между основными методами обработки сигнала. В основе современных систем пространственного звучания (Dolby Surround, Dolby Pro-Logic, Q-Sound, Curcle Surround и других) лежит все та же идея суммарно-разностного преобразования, дополненная "фирменными" методами обработки сигналов (как аналоговыми, так и цифровыми). Часто их объединяют общим названием "3D-системы" ("второе рождение" термина сорокалетней давности!).

Прежде чем рассматривать принципы, используемые при обработке звуковых сигналов в системах объемного звучания, вспомним типичный процесс создания записи. Сначала производится запись, имеющая много индивидуальных каналов -- инструменты, голоса, звуковые эффекты и т.д. Во время микширования для каждой звуковой дорожки контролируется уровень громкости и расположение источника звука для достижения требуемого результата. В случае стереозаписи результатом микширования являются два канала, для surround-систем число каналов больше (например, 6 каналов для формата "5.1" Dolby Digital/AC-3). В любом случае, каждый канал состоит из сигналов, которые предназначены для направления в отдельные колонки при прослушивании пользователем. Каждый из этих сигналов представляет собой результат сложного микширования сигналов исходных источников.

Далее происходит процесс кодирования каналов, полученных после микширования и в результате получается один цифровой поток (bitstream). При проигрывании декодер обрабатывает цифровой поток, разделяя его на индивидуальные каналы и передавая их для воспроизведения на акустические системы. Для многоканальных (дискретных) систем объемного звучания при этом возможен режим имитации реально отсутствующих акустических систем (Phantom mode). Если у вас всего две колонки, тогда канал сабвуфера (низкочастотный) и центральный (диалогов) просто добавляются одновременно к обоим выходным каналам. Задний левый канал добавляется к левому выходному каналу, задний правый к правому выходному каналу.

Вспомним, что панорамирование воздействует только на амплитуду звукового сигнала. Преобразование звука в современных 3D-системах включает в звуковой поток дополнительную информацию о амплитуде и разности фаз/задержке между выходными каналами. Обычно степень обработки зависит от частоты сигнала, хотя некоторые эффекты создаются с использованием простых задержек по времени.

Какие же методы используются для обработки звукового сигнала? В первую очередь это расширение стереобазы (Stereo Expansion), которое производится путем воздействия на разностный стереосигнал фронтальных каналов. Этот метод можно считать классическим и он применяется прежде всего к обычным стереозаписям.

Обработка сигнала может быть как аналоговой, так и цифровой. Во-вторых, Positional 3D Audio (локализуемый 3D звук). Этот метод оперирует с множеством отдельных звуковых каналов и пытается индивидуально определить местоположение каждого сигнала в пространстве. В-третьих, Virtual Surround (виртуальный окружающий звук) - метод воспроизведения многоканальной записи с использованием ограниченного числа источников звука, например воспроизведение пятиканального звука на двух акустических колонках. Очевидно, что два последних метода применимы только к многоканальным звуковым носителям (записи в формате DVD, AC-3), что пока для автомобильных систем не очень актуально.

Замыкают список различные методы искусственной реверберации. Когда звук распространяется в пространстве, он может отражаться или поглощаться различными объектами. Отраженные звуки в большом пространстве могут в реальности создавать ясно различимое эхо, но в ограниченном пространстве происходит совмещение множества отраженных звуков так, что мы слышим их как единую последовательность, которая следует за исходным звуком и затухает, причем степень затухания различна для разных частот и напрямую зависит от свойств окружающего пространства.

В цифровых звуковых процессорах используется обобщенная модель реверберации, что сводит управление процессом реверберации к заданию ключевых параметров (время задержки, количество отражений, скорость затухания, изменение спектрального состава отраженных сигналов). Таким образом реализуются режимы hall, live, stadium, и т.д. Имитация получается достаточно реалистичной. В аналоговых процессорах для этой цели используются линии задержки сигнала. Управление параметрами реверберации в этом случае значительно сложнее, поэтому обычно имеется только один фиксированный режим работы.

Конечно, изложить особенности строения всех существующих систем объемного звучания трудно, но их работа основана на рассмотренных принципах - различие только в деталях алгоритмов и наборе режимов (предустановок). Поэтому лучший советчик при выборе звукового процессора - собственный слух.

Публикация: www.bluesmobil.com/shikhman

 Рекомендуем интересные статьи раздела Искусство аудио:

▪ Тонкомпенсированные регуляторы громкости

▪ Ловля блох по-научному

▪ Моноблоки или компоненты?

Смотрите другие статьи раздела Искусство аудио.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Впервые преоодолена передача ВИЧ от матери к ребенку 02.01.2026

Проблема вертикальной передачи ВИЧ - от матери к ребенку - остается одной из ключевых задач глобальной медицины. Недавний отчет Всемирной организации здравоохранения (ВОЗ) демонстрирует историческое достижение: Бразилия впервые в своей истории полностью преодолела этот путь передачи вируса. Страна стала 19-й в мире и первой с населением более 100 миллионов человек, которая достигла такого результата. Достижения Бразилии основаны на комплексных медицинских программах, обеспечивающих своевременный доступ к диагностике и терапии для всех слоев населения. ВОЗ официально подтвердило, что уровень передачи ВИЧ от матери к ребенку снизился до менее двух процентов. Более 95% беременных женщин в стране получают регулярный скрининг на ВИЧ и необходимое лечение в рамках стандартного ведения беременности. Изначально программа тестировалась в крупных муниципалитетах и штатах с населением более 100 тысяч человек, а затем была масштабирована на всю страну. Такой подход позволил унифицировать ста ...>>

Нанослой германия увеличивает эффективность солнечных батарей на треть 02.01.2026

Разработка высокоэффективных солнечных батарей остается одной из ключевых задач современной энергетики. Недавнее исследование южнокорейских ученых позволило повысить производительность тонкопленочных солнечных элементов почти на 30%, что открывает новые перспективы для возобновляемых источников энергии, гибкой электроники и сенсорных устройств. Команда исследователей сосредоточилась на элементах на основе моносульфида олова (SnS) - нетоксичного и доступного материала, который идеально подходит для гибких солнечных панелей. До настоящего времени эффективность SnS-устройств оставалась низкой из-за проблем на границе контакта с металлическим электродом. В этой области возникали структурные дефекты, диффузия элементов и электрические потери, что существенно ограничивало возможности таких батарей. "Этот интерфейс был главным барьером для достижения высокой производительности", - отмечает профессор Джейонг Хо из Национального университета Чоннам. Для решения этих проблем ученые предлож ...>>

Электростатическое решение для борьбы с льдом и инеем 01.01.2026

Борьба с льдом и инеем на транспортных средствах и критически важных поверхностях зимой остается сложной и затратной задачей. Ученые из Virginia Tech разработали инновационную технологию, способную разрушать лед и иней без использования тепла или химических реагентов, что открывает новые возможности для безопасной и экологичной зимней эксплуатации транспорта. Исследователи обнаружили, что лед и иней образуют кристаллическую решетку с так называемыми ионными дефектами - заряженными участками, способными перемещаться под воздействием электрического поля. Эти дефекты являются ключом к управлению прочностью льда и его удалением с поверхностей. Когда на замерзшую поверхность подается положительный электрический заряд, отрицательные ионные дефекты притягиваются к источнику поля. Это вызывает разрушение кристаллической решетки льда, в результате чего часть льда буквально "отскакивает" от поверхности. Такой эффект позволяет удалять лед без применения внешнего тепла или химических средств ...>>

Случайная новость из Архива

Искусственный алмаз получен при комнатной температуре 23.11.2020

Новая технология позволяет синтезировать искусственные алмазы без сильного нагревания и получать даже редчайший лонсдейлит с особо прочными кристаллами.

В естественных условиях алмазы формируются глубоко в недрах Земли. Его образование занимает немало времени, требует высокого давления и нагрева выше 1000 °C. Получать синтетические алмазы удается быстрее, хотя процесс по-прежнему происходит при огромных давлениях и температурах. Обойтись без нагревания ученые научились только теперь, разработав синтез алмазов при обычной комнатной температуре.

Атомы углерода могут образовывать самые разные структуры - от плоского и черного графена до сверхпрочного и прозрачного алмаза. Однако и алмазы бывают разными: частицы в его кристаллах могут складываться не только в "классическую" кубическую, но и в гексагональную кристаллическую решетку, образуя особую форму алмаза - лонсдейлит. Он отличается еще большей твердостью, чем кубический, однако в природе встречается намного реже. Да и в лаборатории получить его сложнее.

Однако международной команде ученых во главе с профессором Австралийского национального университета Джоди Брэдби удалось синтезировать и кубическую, и гексагональную формы алмаза без использования высоких температур. Как правило, для этого пытаются искусственно воссоздать условия земных недр с их жаром и огромным давлением. Однако на этот раз физики обратились к другому естественному механизму образования алмазов - метеоритному.

Эти кристаллы действительно могут появляться из углерода в результате мощных ударов небесных тел, причем не только на Земле, но и в космосе. Предполагается, что температура при этом не так важна, как сдвиговая сила, благодаря которой разные слои материала испытывают усилие, направленное в разные стороны. Представьте сильный толчок в стол с плохо закрепленными ножками: столешница сдвигается в одну сторону, ножки - в обратную.

Поэтому авторы сконструировали установку, которая позволяла воздействовать на образец графита мощным сдвиговым усилием и одновременно огромным давлением. Рассмотрев затем образец под электронным микроскопом, они обнаружили кристаллы алмаза. Кубические кристаллы образовали тончайший "капилляр" между слоями лонсдейлита. Процесс занял всего несколько минут, и ученые надеются, что его удастся доработать для промышленного применения и массового синтеза этого невероятно прочного материала.

Возможно даже, что, дополнительно повысив сдвиговую силу, удастся снизить давление, необходимое для образования кристаллов. Пока для этого требуется порядка 80 ГПа - как замечают авторы, "давление, сравнимое с весом 640 африканских слонов, балансирующих на носке балетного пуанта".

Другие интересные новости:

▪ Напиток из лужи

▪ Вечная мерзлота под угрозой

▪ Управление мозговыми волнами

▪ Сетевое хранилище Synology DS216+

▪ Беспилотные аппараты сами построили мост

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Биографии великих ученых. Подборка статей

▪ статья Езда в незнаемое. Крылатое выражение

▪ статья Откуда у Аполлона появилась лира? Подробный ответ

▪ статья Слесарь по эксплуатации и ремонту газового оборудования. Типовая инструкция по охране труда

▪ статья Литографские чернила. Простые рецепты и советы

▪ статья Операционные усилители серий КР1446 и КФ1446. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025