Бесплатная техническая библиотека
Фигура и фон. Энциклопедия зрительных иллюзий

На досуге / Зрительные (оптические) иллюзии
Комментарии к статье
<< Назад: Меняющийся рельеф и перспектива
>> Вперед: Портретные иллюзии
Укажем здесь на ряд иллюзий зрения, обусловленных влиянием контраста яркости, т. е. отношения разности яркостей объекта и фона к яркости фона. Предметы и фигуры мы привыкли всегда видеть на том или ином фоне. Мы уже указывали (см. п. 6), что при рассматривании фигур мы иногда их части уподобляем фигуре в целом. Там речь шла об общепсихологическом контрасте.
Что же можно сказать о контрастах яркости?
Во-первых, оказывается, что на более темном фоне мы видим фигуры более светлыми и, наоборот, на светлом - более темными. Доказательством этого могут служить фигуры, изображенные на рис. 101-103. Между прочим, иллюзии, происходящие вследствие контраста яркости, показанные на этих рисунках, можно наблюдать и при цветном исполнении этих фигур.
Рис. 101. Заштрихованная фигура справа кажется светлее такой же фигуры на светлом фоне слева
Рис. 102. Заштрихованная фигура справа кажется светлее такой же фигуры на светлом фоне слева
Рис. 103. Перекрестки белых полосок между черными квадратами кажутся серыми
На основании изложенного иллюзию серых пятен на пересечениях черных линий рис. 18 (см. п. 3) частично можно объяснить явлением иррадиации, а частично и влиянием контраста яркости. Наконец, иллюзии рис. 104-106 уже никак нельзя объяснить только явлением иррадиации. Впервые их сопоставил и дал им объяснение в предисловии к своему альбому иллюзий Я. И. Перельман*.
* (Перельман Я. И., Обманы зрения, 1924.)
Рис. 104. Кружки кажутся шестигранниками при рассматривании на близком расстоянии
Рис. 105. То же, но при рассматривании с расстояния, большего, чем на рис. 104
Рис. 106. Кружки также кажутся шестигранниками, хотя они белые, а фон черный
Во-вторых, интересно явление так называемого краевого контраста, заключающееся в том, что создается впечатление, будто яркости каждого прямоугольника фигуры на рис. 107 не одинаковы, а несколько темнее у границ с более светлым участком и несколько светлее у границ с более темным. Иногда даже кажется, что эти прямоугольники заштрихованы так, чтобы создавалось впечатление их поперечной вогнутости. Однако, заслоняя соседние полосы, можно убедиться, что каждая отдельная полоса имеет совершенно однотонную штриховку.
Рис. 107
В-третьих, при восприятии фигуры и фона мы склонны видеть прежде всего пятна меньшей площади, а также пятна более яркие, "выступающие", причем чаще всего фон нам кажется лежащим дальше от нас, за фигурой. Чем больше контраст яркости, тем лучше заметен объект и тем отчетливее видны его контур и форма. Примеры сказанному мы находим на рис. 108-111.
Рис. 108. В первую очередь мы воспринимаем либо только темную, либо только светлую части фигуры
Рис. 109. Буква С видна более отчетливо (как более знакомая), чем яркая фигура фона, окружающего букву
Рис. 110. В первую очередь большинство видит на этом рисунке вазу, а затем два силуэта
Рис. 111. То же произойдет и при изменении яркости фигуры и фона
Читателю, взглянувшему мгновенно на горизонтальный верхний или средний ряд черных кружков рис. 112, трудно определить число кружков, помещенных слева и справа от вертикальной черточки. Если же эти кружки расположить по так называемым числовым фигурам, то сосчитать кружки при мгновенном взгляде не представит никакого труда.
Рис. 112. Кружки, расположенные по числовым фигурам, можно сосчитать мгновенно. А если кружки расположены в линию, можете вы так же быстро определить их число?
Наконец, интересно также явление "отпадания к фону" некоторых частей фигур. Так, если прямоугольный предмет, окрашенный черной краской, как показано на рис. 113, наблюдать с некоторого большого расстояния на белом фоне, то он будет выглядеть приблизительно таким, каким изображен на рис. 114. В этом случае белые пятна на предмете, тонкие линии его контура и резкие переходы от фигуры к фону на углах отпадут к фону, и форма предмета будет казаться искаженной. Глаз очень часто темное пятно принимает за тень от других рядом стоящих предметов.
Рис. 113
Рис. 114
Видимая форма и очертание предметов могут искажаться не только вследствие отпадания частей контура к фону, но и такой пятнистой окраской предмета, когда его контур кажется деформированным, искаженным. Например, трудно сразу сказать, что на рис. 115 изображен силуэт кролика. Иногда пятнистая окраска может заранее учитывать изменение яркости местных предметов и яркости фона при их перемещении, при мерцании воздушной дымки, при волнующейся поверхности моря, при движении облаков и т. п.
Рис. 115
На этих принципах основана камуфляжная окраска предметов пятнами разных цветов в целях военной маскировки. Такая же окраска "камуфляж" наблюдается в мире животных и растений, служит для них защитной окраской. По вопросам расположения пятен и подбору маскирующих окрасок различных объектов имеется обширная специальная литература.
Приведенные в этом разделе иллюзии еще раз подтверждают то обстоятельство, что их появление во многом зависит от того, какое "толкование" или "оформление" видимого происходит в нашем сознании.
Автор: Артамонов И.Д.
<< Назад: Меняющийся рельеф и перспектива
>> Вперед: Портретные иллюзии
Последние новости науки и техники, новинки электроники:
Кислотность океана разрушает зубы акул
03.10.2025
Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем.
Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул.
Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>
Почтовый космический корабль Arc
03.10.2025
Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение.
Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом.
Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>
Лазерное обогащение урана
02.10.2025
Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана.
Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций.
GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>
Случайная новость из Архива Передача электричества из космоса на Землю
21.05.2020
Ракета-носитель Atlas V вывела на орбиту Земли военный автоматический мини-шаттл X-37B. Это шестой успешный полет "космического самолета", как еще называют этот многоразовый аппарат. Большинство задач миссии X-37B решаются по военным программам и засекречены, но не все. В этот раз мини-шаттл вывел на орбиту прототип фотоэлектрического модуля для передачи на землю солнечной энергии в виде микроволнового излучения.
Об эксперименте с передачей энергии сообщила Военно-морская исследовательская лаборатория США (NRL), в недрах которой разработан экспериментальный модуль PRAM (Photovoltaic Radio-frequency Antenna Module). Опытный фотоэлектрический модуль с радиочастотной антенной представляет собой блок со сторонами 30 см. Блок оснащен обычными фотоэлектрическими преобразователями (солнечными элементами), которые преобразуют падающий на них солнечный свет в электрическую энергию.
Полученная модулем на орбите энергия преобразуется в микроволновое излучение и будет передаваться на приемник, находящийся на земле. Приемник он же генератор преобразует микроволновое излучение в электричество и отдаст его потребителям. В космосе полученную таким образом энергию можно передавать по лазерному лучу, например, с помощью мощного инфракрасного лазера, но земная атмосфера без значительного поглощения может пропустить только микроволновое излучение.
Запланированный лабораторией NRL эксперимент призван в реальных условиях изучить на прототипе процесс преобразования энергии, тепловые характеристики процессов и эффективность технологии. Подобные методы передачи энергии с орбиты, где солнце светит 24 часа в сутки и под одним и тем же оптимальным углом к солнечной панели, могут помочь в обеспечении электричеством отдаленных уголков планеты, например, военные базы или зоны бедствий.
Основываясь на результатах PRAM, следующим шагом станет создание полнофункциональной системы-прототипа с установкой на спутник. Также на следующем этапе будет создан канал для отправки энергии на Землю. Нет сомнения, что превращение такой технологии в крупномасштабный коммерческий источник энергии может занять десятилетия, и он долго будет чрезвычайно дорогим, но для ряда задач быстрое развертывание силовых установок на Земле с неограниченной энергией может оказаться соразмерно затратам.
|
Другие интересные новости:
▪ Рычание вождя
▪ Выяснена причина намагничивания Вселенной
▪ Дроны и коронавирус
▪ Наушники Qualcomm S7 и S7 Pro
▪ Светодиод синего цвета свечения APED3820PBC
Лента новостей науки и техники, новинок электроники
Интересные материалы Бесплатной технической библиотеки:
▪ раздел сайта Зарядные устройства, аккумуляторы, батарейки. Подборка статей
▪ статья Страна должна знать своих героев. Крылатое выражение
▪ статья Что такое полное обследование? Подробный ответ
▪ статья Врач-уролог. Должностная инструкция
▪ статья Двухтактный транзисторный усилитель мощности. Энциклопедия радиоэлектроники и электротехники
▪ статья Электронно-релейный регулятор напряжения. Энциклопедия радиоэлектроники и электротехники
Оставьте свой комментарий к этой статье:
Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua 2000-2025
|