В менее известном варианте было написано "Частная С.". Назовите более известный вариант
Правильный ответ: Посторонним В.
Интересная Случайная пятерка вопросов викторины онлайн.
Смотрите другие статьи раздела Викторина онлайн.
Читайте и пишите полезные комментарии к этой статье.
<< Назад
Другие вопросы Викторины онлайн:
ЕГО членами также являются R&B-исполнитель Эл Грин и рэпер Грэндмастер Флэш.
Однажды у спартанца спросили, почему они не держат деньги в общественной сокровищнице. Тот ответил: "Чтобы не совращать..." Кого?
Скандинавы строили свои жилища из брикетов торфа. Сара ПАркик называет эти брикеты природным... Чем?
В последней четверти XVI века в моду вошли "жернова" - огромные кружевные воротники, стоившие бешеные деньги. Существует мнение, что именно они помогли всеобщему признанию одного предмета домашней утвари, которым почти все пользуются ежедневно. Что это за предмет?
<< Назад
Последние новости науки и техники, новинки электроники:
Кислотность океана разрушает зубы акул
03.10.2025
Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем.
Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул.
Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>
Почтовый космический корабль Arc
03.10.2025
Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение.
Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом.
Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>
Лазерное обогащение урана
02.10.2025
Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана.
Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций.
GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>
Случайная новость из Архива Нанорешетка прочнее титана
13.02.2025
Создание легких и прочных материалов всегда было одной из ключевых задач для инженеров и ученых. Особенно актуальна эта проблема для аэрокосмической отрасли, где снижение веса конструкций может привести к значительной экономии топлива и повышению эффективности. Традиционные материалы, такие как алюминий и титан, обладают ограничениями, а углеродное волокно, хотя и является прорывным материалом, не всегда может обеспечить необходимые характеристики. И вот, исследователи из Университета Торонто представили революционный материал, который может кардинально изменить ситуацию.
Ученые разработали уникальный материал, который сочетает в себе легкость и высочайшую прочность. Секрет этого достижения заключается в использовании наноструктурированных материалов, которые имитируют природные формы, такие как кости, ракушки или соты. Эти формы обеспечивают равномерное распределение нагрузки, предотвращая образование слабых мест, где может начаться разрушение.
Для поиска оптимальных форм исследователи применили байесовскую оптимизацию - метод машинного обучения, который помогает выбирать лучший вариант среди множества возможных. Были использованы данные из тысяч компьютерных симуляций, чтобы определить наиболее эффективные формы для своих карбоновых нанорешеток.
"Наноархитектурные материалы сочетают высокоэффективные формы, подобные треугольным конструкциям в мостах, но на наноуровне, что позволяет достичь рекордного соотношения прочности к весу", - объясняет Питер Серлс, главный автор исследования.
Алгоритм создал тысячи возможных конструкций, которые тестировались в виртуальной среде с помощью метода конечных элементов.
Затем компьютерная программа постепенно совершенствовала эти конструкции, пока не нашла оптимальные структуры с максимальной прочностью и жесткостью при минимальном весе. Отобранные конструкции исследователи воспроизвели физически с помощью двухфотонной полимеризации - метода 3D-печати с нанометровой точностью. Они создали решетки, состоящие из структур толщиной всего от 300 до 600 нм. Затем эти решетки (6,3х6,3х3,8 мм), состоящие из 18,75 млн отдельных клеток, подвергались пиролизу - нагреванию до 900°C в среде азота, что превращало полимер в стекловидный углерод.
Оптимизированные нанорешетки более чем вдвое увеличили прочность предыдущих конструкций. Они выдержали нагрузку 2,03 мегапаскаля на кубический метр на килограмм плотности. В перспективе это более чем в 10 раз превосходит прочность многих легких материалов, таких как алюминиевые сплавы или углеродное волокно. Они также в 5 раз прочнее титана.
"Это первый случай, когда машинное обучение использовано для оптимизации наноструктурированных материалов, и результаты нас поразили", - отметил Серлс.
"ИИ не просто повторял известные удачные геометрии, а создавал совершенно новые эффективные формы". Интересно, что чем меньше нанорешетки, тем они прочнее. Это связано с "эффектом размера" - явлением, при котором материалы на чрезвычайно малых масштабах ведут себя иначе. Ученые обнаружили, что при уменьшении диаметра углеродных балок до 300 нанометров их прочность резко возрастала. Это объясняется тем, что на наноуровне атомы углерода выстраиваются в структуры, которые обеспечивают максимальную жесткость.
Внешний слой балок состоял на 94% из sp2-связанного углерода, который известен своей исключительной прочностью. Благодаря этому материал выдерживает огромные нагрузки, не ломаясь. Этот прорыв может значительно изменить аэрокосмическую отрасль, производство самолетов, вертолетов и космических аппаратов. Более легкие детали позволят уменьшить расход топлива и сократить выбросы. "Например, замена титанового компонента самолета на наш материал может сэкономить 80 литров топлива в год на каждый килограмм замененного материала", - отмечает Серлс.
Исследователи планируют масштабировать свои разработки для коммерческого использования. Их следующие шаги будут направлены на создание полноценных конструкций с этими материалами, сохраняя их прочность и легкость. Также планируется продолжать поиск новых конструкций, которые позволят еще больше уменьшить плотность материала без потери прочности. Это открытие является ярким примером того, как современные технологии, такие как машинное обучение и нанотехнологии, могут приводить к созданию революционных материалов, способных изменить наш мир.
|
Другие интересные новости:
Как восстановить утраченные воспоминания
Обучаемый компьютерный чип, работающий по принципу мозга
Электрический фургон Volkswagen ID.Buzz
Органические лазеры для цветных дисплеев и проекторов
Голограмму можно потрогать
Лента новостей науки и техники, новинок электроники
Интересные материалы Бесплатной технической библиотеки:
▪ раздел сайта Электроснабжение. Подборка статей
▪ статья Лямку тянуть. Крылатое выражение
▪ статья Какова плотность самой разреженной материи? Подробный ответ
▪ статья Основные виды аварийных ситуаций
▪ статья Спектр музыкального сигнала. Часть 3. Энциклопедия радиоэлектроники и электротехники
▪ статья Транзисторы IRL2203N - IRLR3103. Энциклопедия радиоэлектроники и электротехники
Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua
2000-2025