Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Химический сторож. Химические эксперименты

Занимательные опыты по химии

Занимательные опыты дома / Опыты по химии для детей

Комментарии к статье Комментарии к статье

Этот опыт мы назвали его химическим сторожем, а более строгое его название - хемотронный датчик. Хемотроника - новая отрасль науки, она возникла на стыке электроники и химии. В отличие от электроники  она изучает процессы в жидкости, где передвигаются ионы. Так как ионы намного тяжелее электронов, то хемотронные процессы идут медленнее. Но далеко не всегда быстродействие - самое главное. Хемотронные устройства очень надежны, им уже сейчас находят много применений.

Разумеется, настоящие хемотронные приборы сложны. И все же вы можете сделать модель одного такого устройства - датчика. Прежде всего, любопытно посмотреть, как работают хемотроны. А вдобавок этот датчик наверняка сослужит вам добрую службу.

Сначала изготовьте цилиндрический корпус. Лучше всего было бы выточить его из оргстекла на токарном станке, но это не обязательно; корпус можно и склеить из отдельных пластинок оргстекла, в этом случае он будет прямоугольным. Примерный диаметр круглого корпуса-40 мм, а высота около 20 мм. С торцов цилиндра надо выточить две полости глубиной около 5 мм и диаметром 30 мм, так чтобы между ними осталась толстостенная перемычка. Непосредственно под перемычкой просверлите горизонтально отверстие диаметром 2-3 мм для заливки электролита и подберите к этому отверстию плотную пробку. Затем с противоположной стороны корпуса просверлите одно под другим еще три отверстия для электродов диаметром чуть больше миллиметра. Центральный электрод должен находиться в перемычке, верхний и нижний - в соответствующих полостях.

В качестве электродов возьмите толстые грифели для цанговых карандашей. Те места, где грифели выходят  из корпуса, надо загерметизировать каким-либо клеем. Когда клей высохнет, в перемычке просверлите вертикально очень тонкое сквозное отверстие диаметром не более 0,5 мм. Выбирая для него место, имейте в виду, что это отверстие обязательно должно пройти через средний грифель-электрод.

Прибор уже почти готов. Осталось лишь приклеить к нему сверху и снизу по тонкой мембране из того æe оргстекла, только небольшой толщины (0,3- 0,5 мм). Пока приклейте только нижнюю мембрану.

Теперь об электролите. В половине стакана воды растворите 20-30 г йодида калия, а затем, слегка подогрев раствор, добавьте около 1 г йода. Через боковое, более широкое отверстие залейте этот электролит внутрь датчика, в нижнюю полость, следя за тем, чтобы не осталось воздушных пузырьков. Легче всего провести эту операцию медицинским шприцем. Когда заполнится и верхняя полость, приклейте вторую мембрану и окончательно загерметизируйте корпус, для чего вставьте во впускное отверстие заранее приготовленную пробку и тщательно залейте ее клеем.

Хемотронный датчик будет работать от батарейки для карманного фонарика. Верхний и нижний электроды, находящиеся в полости, соедините с положительным полюсом батарейки, средний - с отрицательным. В цепь желательно включить реостат, а также вольтметр и микроамперметр, которые, как вы уже знаете, можно заменить тестером.

С помощью реостата (или сопротивлений) установите напряжение примерно 0,8-0,9 В. Микроамперметр, включенный в цепь центрального электрода, покажет ток 200-300 мкА. Оставьте цепь замкнутой часов на десять-пятнадцать. Ток постепенно понизится до 10-20 мкА, что и требуется. Теперь датчик готов к работе.

Проверить, как он действует, проще всего так: подуйте на одну из мембран или коснитесь ее острием  иголки. В то же мгновение стрелка микроамперметра  резко отклонится вправо. Для глаза движение мембраны незаметно, но датчик на него сразу отреагировал.

Поясним, почему так происходит. Сила тока зависит от того, сколько йода находится возле отрицательного электрода-катода. Под действием постоянного тока под на катоде восстанавливается, принимая электроны, а на аноде он вновь образуется из ионов. Поэтому йод как бы постепенно перекачивается от катода к аноду. После зарядки датчика ток понемногу падает, потому что у отрицательного электрода остается все меньше йода. Но как только вы чуть-чуть, даже слабым прикосновением, сдвинули мембрану, к катоду поступает дополнительная, пусть и очень небольшая, порция молекул йода; датчик мгновенно на это реагирует: ток возрастает.

Такие хемотронные приборы на редкость чувствительны; тщательно изготовленные, они могут иногда отреагировать буквально на считанные молекулы. Их чувствительность используют на практике - когда сигнал слаб и другими способами его трудно зарегистрировать. Подобные хемотронные устройства применяют, например, в медицинских исследованиях, в технике - для подсчета мелких деталей, движущихся на конвейере.

А нельзя ли как-нибудь использовать такой датчик дома или в школе? Конечно, можно. Почему бы не превратить его в прибор, который будет предупреждать вас о приходе гостя? Для этого датчик достаточно поставить в дверях квартиры, и он откликнется, как только гость дотронется до двери.

Но, понятно, один такой датчик, сам по себе, для этой цели не слишком удобен: надо все время смотреть на микроамперметр и ждать, пока отклонится его стрелка. Однако к датчику можно приспособить систему сигнализации - звонок или электрическую лампу. Как это сделать - придумайте сами или посоветуйтесь с учителем физики.

Между прочим, такой хемотронный "сторож" удается использовать для охраны важных объектов, например банков. Конечно, в этом случае датчик отнюдь не гостеприимен - он предупреждает об опасности.

Автор: Ольгин О.М.

 Рекомендуем интересные опыты по физике:

▪ Водяной подсвечник

▪ Реактивный корабль

▪ Наэлектризованная бумага

 Рекомендуем интересные опыты по химии:

▪ Акварельные краски

▪ Поучительные чудеса

▪ Полупроницаемая перегородка задерживает сахар и пропускает воду

Смотрите другие статьи раздела Занимательные опыты дома.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Хорошо управляемые луга могут компенсировать выбросы от скота 15.02.2026

Животноводство, особенно разведение крупного рогатого скота, часто обвиняют в значительном вкладе в глобальное потепление из-за мощного парникового газа - метана, который выделяется при пищеварении у жвачных животных. Это вызывает острые политические споры и призывы к сокращению потребления мяса. Однако ученые напоминают, что полная картина климатического воздействия отрасли не ограничивается только выбросами от животных: огромную роль играет окружающая экосистема - пастбища, почва и растительность, которые способны активно поглощать углекислый газ из атмосферы. Исследователи из Университета Небраски-Линкольна решили глубже изучить этот баланс. Группа под руководством профессора Галена Эриксона сосредоточилась на том, как правильно организованные пастбища накапливают углерод в растениях и грунте благодаря естественным процессам, стимулируемым выпасом скота. Ученые подчеркивают, что при достаточном уровне осадков и грамотном управлении такие луга превращаются в мощные природные погло ...>>

NASA тестирует инновационную технологию крыла 15.02.2026

Коммерческая авиация ежегодно расходует колоссальные объемы керосина, что сказывается не только на бюджете авиакомпаний, но и на состоянии окружающей среды. В 2024 году глобальные затраты на авиационное топливо достигли 291 миллиарда долларов, и эта сумма продолжает расти. Чтобы справиться с этими вызовами, NASA активно работает над технологиями, способными заметно повысить аэродинамическую эффективность самолетов. Одним из самых перспективных направлений стало создание специальной конструкции крыла, которая максимизирует естественный ламинарный поток воздуха и минимизирует сопротивление. В январе 2026 года специалисты NASA Armstrong Flight Research Center успешно провели важный этап наземных испытаний концепции Crossflow Attenuated Natural Laminar Flow (CATNLF). Для эксперимента под фюзеляж исследовательского самолета F-15B закрепили вертикально ориентированную масштабную модель высотой около 0,9 м (3 фута), напоминающую узкий киль. Такая компоновка позволила подвергнуть прототип р ...>>

Забота о внуках очень полезна для здоровья мозга 14.02.2026

Общение между поколениями приносит радость всей семье, но мало кто задумывается, насколько активно бабушки и дедушки, заботящиеся о внуках, поддерживают свою умственную форму. Регулярное взаимодействие с детьми стимулирует мозг пожилых людей, помогая сохранять память, скорость мышления и общую когнитивную активность. Новые научные данные подтверждают, что такая добровольная помощь не только важна для общества, но и может замедлять возрастные изменения в мозге. Исследователи из Тилбургского университета в Нидерландах провели анализ, чтобы понять, приносит ли уход за внуками реальную пользу здоровью пожилых людей. Ведущий автор работы Флавия Черечес отметила, что многие бабушки и дедушки регулярно присматривают за детьми, и оставался открытым вопрос, насколько это положительно сказывается на их собственном благополучии, особенно в плане когнитивных функций. Ученые поставили цель выяснить, способен ли регулярный уход за внуками замедлить снижение памяти и других умственных способ ...>>

Случайная новость из Архива

Автомобиль для пожилых 10.04.2005

Так как продолжительность жизни в Японии - одна из самых высоких в мире, японское общество стареет. Поэтому автомобильная фирма "Ниссан" намерена выпускать специальный автомобиль для пожилых и инвалидов.

Кресла в нем сделаны поворотными, чтобы облегчить выход и посадку. При открывании багажника оттуда поднимается миниатюрный подъемный кран, помогающий выгрузить чемоданы или складную инвалидную коляску.

А фирма "Тойота" представила на выставке в Токио автомобильное кресло, которое выдвигается из салона и превращается в инвалидное кресло на колесах.

Другие интересные новости:

▪ Синтез керамики

▪ Связь голода с любопытством

▪ Компьютерная мышь Belkin Washable Mouse

▪ Sony PlayStation Move

▪ Сверхъяркие тонкопленочные светодиоды и лазеры

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Стабилизаторы напряжения. Подборка статей

▪ статья Унтер Пришибеев. Крылатое выражение

▪ статья Сколько дерева мы потребляем в настоящее время? Подробный ответ

▪ статья Слесарь по ремонту дорожно-строительных машин и тракторов. Типовая инструкция по охране труда

▪ статья УМЗЧ Kindtree-A140m на микросхеме TDA7294. Энциклопедия радиоэлектроники и электротехники

▪ статья Бегающее кольцо. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026