www.diagram.com.ua
www.diagram.com.ua
Русский: Русская версия English: English version
Translate it!
Поиск по сайту

+ Поиск по журналам
+ Поиск по статьям сайта
+ Поиск по схемам СССР
+ Поиск по Библиотеке

Бесплатная техническая библиотека:
Все статьи А-Я
Энциклопедия радиоэлектроники и электротехники
Новости науки и техники
Журналы, книги, сборники
Архив статей и поиск
Схемы, сервис-мануалы
Электронные справочники
Инструкции по эксплуатации
Голосования
Ваши истории из жизни
На досуге
Случайные статьи
Отзывы о сайте

Справочник:
Большая энциклопедия для детей и взрослых
Биографии великих ученых
Важнейшие научные открытия
Детская научная лаборатория
Должностные инструкции
Домашняя мастерская
Жизнь замечательных физиков
Заводские технологии на дому
Загадки, ребусы, вопросы с подвохом
Инструменты и механизмы для сельского хозяйства
Искусство аудио
Искусство видео
История техники, технологии, предметов вокруг нас
И тут появился изобретатель (ТРИЗ)
Конспекты лекций, шпаргалки
Крылатые слова, фразеологизмы
Личный транспорт: наземный, водный, воздушный
Любителям путешествовать - советы туристу
Моделирование
Нормативная документация по охране труда
Опыты по физике
Опыты по химии
Основы безопасной жизнедеятельности (ОБЖД)
Основы первой медицинской помощи (ОПМП)
Охрана труда
Радиоэлектроника и электротехника
Строителю, домашнему мастеру
Типовые инструкции по охране труда (ТОИ)
Чудеса природы
Шпионские штучки
Электрик в доме
Эффектные фокусы и их разгадки

Техническая документация:
Схемы и сервис-мануалы
Книги, журналы, сборники
Справочники
Параметры радиодеталей
Прошивки
Инструкции по эксплуатации
Энциклопедия радиоэлектроники и электротехники

Бесплатный архив статей
(200000 статей в Архиве)

Алфавитный указатель статей в книгах и журналах

Бонусы:
Ваши истории
Загадки для взрослых и детей
Знаете ли Вы, что...
Зрительные иллюзии
Веселые задачки
Каталог Вивасан
Палиндромы
Сборка кубика Рубика
Форумы
Карта сайта

ДИАГРАММА
© 2000-2020

Дизайн и поддержка:
Александр Кузнецов

Техническое обеспечение:
Михаил Булах

Программирование:
Данил Мончукин

Маркетинг:
Татьяна Анастасьева

Перевод:
Наталья Кузнецова

Контакты

При использовании материалов сайта обязательна ссылка на https://www.diagram.com.ua

сделано в Украине
сделано в Украине

Диаграмма. Бесплатная техническая библиотека

Бесплатная техническая библиотека Бесплатная техническая библиотека, Энциклопедия радиоэлектроники и электротехники

НОВОСТИ НАУКИ И ТЕХНИКИ, НОВИНКИ ЭЛЕКТРОНИКИ
Бесплатная техническая библиотека / Лента новостей

Бобовые принуждают бактерии к симбиозу 15.06.2020

Биологи из Швейцарской высшей технической школы Цюриха изучили механизм взаимодействия бобовых с симбиотическими бактериями, которые вырабатывают необходимый этим растениям аммоний.

Клубеньковые бактерии, обитающие в корнях бобовых и производящие необходимые растениям азотсодержащие соединения, давно являются объектом пристального внимания ученых. Перенос этого симбиоза на другие сельскохозяйственные растения, например, злаковые, могло бы избавить от необходимости применять азотные удобрения. Швейцарские биологи братья Бит и Маттиас Кристены смогли существенно продвинуться в понимании механизма этого симбиоза.

В качестве "подопытных" в своем исследовании они использовали люцерну усеченную (Medicago truncatula) и ее клубеньковые бактерии-симбионты Sinorhizobium meliloti, изучив обмен веществ между этими двумя организмами с помощью изотопной маркировки и биохимического анализа.

В результате выяснилось, что бактерии получают от растений не только углеродные соединения, как считалось ранее, но также, что стало сюрпризом для ученых - богатую азотом аминокислоту аргинин. То есть растения фактически отдают обратно азот, который получают от микроорганизмов. Но как объясняют авторы исследования, это часть стратегии, с помощью которой бобовые принуждают клубеньковые бактерии к симбиозу. "В отличие от распространенного представления, этот симбиоз базируется отнюдь не на добровольном обмене", - говорит Маттиас Кристен.

Биологам удалось установить, что люцерна относится к своим клубеньковым бактериям без всякой жалости и выступает в отношении них почти как возбудитель заболевания. Растение поставляет бактериям углеводы, но при этом целенаправленно лишает их кислорода, создавая таким образом невыносимые условия для микроорганизмов. Однако аргинин помогает бактериям выживать - с помощью него они проводят обмен веществ, в ходе которого поучают окисляющие протоны вместе с молекулами азота. В результате этого процесса вырабатывается аммоний, который и достается растению.

По словам авторов исследования, этот аммоний является, по сути, побочным продуктом борьбы клубеньковых бактерий за свое выживание в агрессивной среде, которую сами же бобовые им и обеспечивают.

<< Назад: Гигантские природные ускорители частиц 16.06.2020

>> Вперед: Эффективный способ борьбы с комарами 15.06.2020

Последние новости науки и техники, новинки электроники:

Сверхлегкая беспроводная мышь Logitech G Pro X Superlight 25.11.2020

Logitech представила новую беспроводную игровую мышь Logitech G Pro X Superlight, которую в компании называют самой легкой wireless-мышью для профессиональных киберспортсменов. Модель уже прошла испытания игроками датской команды Astralis в 12-ом сезоне ESL PRO League Final, а также французской команды G2 Esports на League of Legends European Championship 2020. Модернизированная и специально спроектированная для снижения веса при одновременном повышении производительности, мышка весит менее 6 ...>>

Магнитный спрей создает роботов 25.11.2020

Для создания крошечных роботизированных устройств нужна миниатюрная электроника, что делает производство таких механизмов сложным и дорогостоящим занятием. Исследователи из Гонконга рассказали о новой технологии, позволяющей превращать любые микроскопические объекты в роботов при помощи специального магнитного спрея. Команда ученых заявила о создании уникального спрея, после обработки которым любые объекты получают функции роботов и могут управляться благодаря магнитным свойствам. Спрей состо ...>>

Новая технология оптического изображения наночастиц 24.11.2020

Ученые из Хьюстонского университета и Онкологического центра при Техасском университете (США) разработали новую технологию оптического изображения PANORAMA, которая может обнаружить наночастицы размером до 25 нанометров. Специалисты отмечают, что размер самого маленького прозрачного объекта, который может сегодня отобразить стандартный микроскоп, составляет от 100 до 200 нанометров. Помимо того, что они такие маленькие, эти объекты не отражают, не поглощают и не "рассеивают" достаточно света, ...>>

Сетевое хранилище TerraMaster F5-221 24.11.2020

Ассортимент компании TerraMaster пополнило хранилище с сетевым подключением F5-221, ориентированное на небольшие предприятия и домашних пользователей. Хранилище построено на двухъядерном процессоре Intel Celeron J3355, работающем на частоте 2,0-2,5 ГГц, в распоряжении которого есть 2 ГБ оперативной памяти. Память можно расширить до 6 ГБ. Хранилище TerraMaster F5-221 располагает пятью отсеками, куда можно установить накопители типоразмера 2,5 дюйма или 3,5 дюйма с интерфейсом SATA суммарным об ...>>

Искусственный алмаз получен при комнатной температуре 23.11.2020

Новая технология позволяет синтезировать искусственные алмазы без сильного нагревания и получать даже редчайший лонсдейлит с особо прочными кристаллами. В естественных условиях алмазы формируются глубоко в недрах Земли. Его образование занимает немало времени, требует высокого давления и нагрева выше 1000 °C. Получать синтетические алмазы удается быстрее, хотя процесс по-прежнему происходит при огромных давлениях и температурах. Обойтись без нагревания ученые научились только теперь, разработ ...>>

Случайная новость из Архива

Робот в муравейнике 11.04.2013

Труд французских ученых показывает, что для выполнения разнообразных задач и организации таких сложных систем, как муравейник, достаточно простейшего программного и аппаратного обеспечения. Ученые из французского научного центра CNRS создали компьютерный алгоритм, который позволяет роботам имитировать поведение колонии муравьев. Работа французских ученых показывает, что для выполнения разнообразных задач и организации таких сложных систем, как муравейник, достаточно простейшего программного и аппаратного обеспечения.

Взаимодействие между отдельными индивидами и отдельными объектами играет важнейшую роль в формировании самоорганизующегося коллективного поведения. Последние исследования показали, что муравьи движутся по запутанным тропинкам и коридорам внутри и снаружи муравейника, ориентируясь по четырем различным разным тип информации.

Некоторые виды муравьев способны видеть и ориентируются по Солнцу или ориентирам на своем пути. Другие муравьи и вовсе используют своеобразную инерциальную навигационную систему: суммируют векторы движения, измеряя количество шагов и поворотов тела. Также муравьи могут использовать социальную информацию, например, по наличию груженых едой фуражиров определять направление к пище или находить тропинку по определенным следам (кусочки листьев, семян и т.п.).

Последний тип информации, четвертый, наиболее интересен и заключается в самой структуре муравьиных троп. У некоторых видов муравьев транспортные сети имеют строго определенный рисунок: средний угол между тропинками, выходящими из центра муравейника, симметричен и лежит в диапазоне 50-100 градусов в зависимости от вида муравьев. Таким образом, когда муравей движется к выходу из муравейника, он сталкивается с симметричной бифуркацией (разделением) тропинок и коридоров. На обратном пути муравей видит обратную же картину: асимметричную бифуркацию. Чтобы найти кратчайший маршрут, муравей просто выбирает нужный угол поворота и всегда следует в нужном направлении.

Этот нехитрый природный механизм имеет огромный практический потенциал для робототехники и транспортных сетей. Для того чтобы продемонстрировать насколько эффективен элементарный природный алгоритм муравьиной навигации, ученые изготовили макет ходов муравейника из картона. В ходы шириной 9 см запустили простейших роботов, которые работали в соответствии с муравьиной логикой. Роботы с габаритами 22х21х20 мм были оснащены 4 инфракрасными датчиками для обнаружения препятствий. Также имелся фотодиод для измерения градиентов света (выполняющего роль феромона) и Ni-MH аккумулятор с запасом энергии на работу в течение 3,5 часов. "Мозгом" робота был простой микроконтроллер PIC16LF877 с 8 Кбайт EPROM памяти, и 368 байтами оперативной памяти.

В результате роботы уверенно ориентировались в лабиринте, используя все типы поведения насекомых, включая поисковое (блуждание в поисках правильного маршрута) и уклонение (объезд препятствия по другому маршруту). Исследование французских ученых не только дает новые знания о поведении колоний насекомых, но и позволяет использовать эффективные природные алгоритмы в существующих техногенных транспортных сетях.

Смотрите полный Архив новостей науки и техники, новинок электроники


Бесплатная техническая библиотека Бесплатная техническая документация для любителей и профессионалов