Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Радиоволны. Диапазоны радиоволн. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Начинающему радиолюбителю

Комментарии к статье Комментарии к статье

Предположим, ты снимаешь трубку телефонного аппарата, набираешь или называешь нужный номер. Вскоре ты слышишь голос товарища; а он - твой. Какие электрические явления происходят во время вашего телефонного разговора?

Звуковые, колебания воздуха, созданные тобой, преобразуются микрофоном я электрические колебания звуковой частоты, которые по проводам передаются х аппарату твоего собеседника. Там, на другом конце линии, они с помощью телефона преобразуются в колебания воздуха, воспринимаемые твоим приятелем как звуки. В радиовещании, как и в телефонии, микрофон я телефон или головка громкоговорителя являются конечными звеньями цепи радиопередачи в радиоприема. Но средством, связывающим их, служат не провода, а радиоволны.

"Сердцем" передатчика любой радиостанции является генератор колебаний высокой частоты. Он вырабатывает (генерирует) ток высоком, но строго постоянной для данной радиостанции частоты. Этот ток, усиленный до необходимой мощности поступает в антенну и возбуждает в окружающем ее пространстве электромагнитные колебания той же частоты - радиоволны. Скорость удаления радиоволн от антенны радиостанции равна скорости света: 300000 км/с, что почти в миллион раз быстрее распространения звука в воздухе. Это значит, что если на Московской радиовещательной станции в некоторый момент времени включили передатчик, то ее радиоволны меньше чем за 1/30 с дойдут до Владивостока, а звук за это время успеет распространиться всего лишь на 10м.

Радиоволны распространяются не только в воздухе, но я там, где его нет, например в космическом пространстве. Этим они коренным образом отличаются от звуковых волн, для которых совершенно необходим воздух или какая-либо другая плотная среда, например вода. Когда радиовещательная станция начинает свои передачи, диктор иногда сообщает, что данная радиостанция работает на волне такой-то длины. Волну, бегущую по поверхности воды, мы видим и при известной ловкости можем измерить ее длину. Длину же радиоволн можно измерить только с помощью специальных приборов или рассчитать математическим способом, если мы знаем частоту тока, возбуждающего эта волны.

Длина радиоволны-это расстояние, на которое распространяется Энергия электромагнитного поля за период колебания тока в антенне радиостанции. Понимать это надо так. За время одного периода тока в антенне передатчика в пространстве вокруг нее возникает одна радиоволна. Чем выше частота тока, тем больше следующих друг за другом радиоволн излучается антенной в течение каждой секунды. Допустим, частота тока в антенне радиостанции составляет 1 МГц. Значит период этого тока и рожденного ям электромагнитного поля равен одной миллионной доле секунды. За 1 с радиоволна проходит расстояние 300000 км, или 300000000 м. За одну миллионную долю секунды она пройдет расстояние в миллион раз меньше, т. е. 300000000:1000000. Следовательно, длина волны данной радиостанции равна 300 м.

Длина волны радиостанции зависит от частоты тока в ее антенне: чем больше частота тока, тем короче волна и, наоборот, чем меньше частота тока, тем длиннее волна- Чтобы узнать длину волны радиостанции, надо скорость распространения радиоволн, выраженную в метрах, разделить на частоту тока в ее антенне. А чтобы, наоборот, узнать частоту тока в антенне радиостанции, надо скорость распространения радиоволн разделить на длину волны радиостанции.

Для перевода частоты колебаний в мегагерцах в длину волны в метрах в обратно удобно пользоваться такими формулами:

Радиоволны. Диапазоны радиоволн

где L - длина волны; f-частота колебаний; 300 - скорость, распространения радиоволн, выраженная в тысячах километров в секунду.

Хочу тебя предупредить: не путай понятие о диве волны, на которой работает радиостанция, с дальностью се действия, т.е. с расстоянием, на котором ее передачи могут быть приняты. Дальность действия радиостанции, правда, зависит от длины волны, но не отождествляется с нею. Так, передача на волне длиной в несколько десятков метров может быть услышана на расстоянии в несколько тысяч километров, но не всегда слышна на более близких расстояниях, В то же время передача радиостанции, работающей на волне длиной в сотни и тысячи метров, часто не слышна на таких больших расстояниях, на которых слышны передачи коротковолновых станции.

Итак, каждая радиовещательная станция работает на определенной, отведенной для нее частоте, называемой несущей. Длины волн различных радиостанций неодинаковы, но строго постоянны для каждой их них. Это и дает возможность принимать передачи каждой радиостанции в отдельности, а не все одновременно.

Диапазоны радиоволн

Весьма широкий участок радиоволн, отведенный для радиовещательных станций, условно подразделен на несколько диапазонов: длинноволновый (сокращенно ДВ), средневолновый (СВ), коротковолновый (КВ), ультракоротковолновый (УКВ). В нашей стране длинноволновый диапазон охватывает волны длиной от 735,3 до 2000 м, что соответствует частотам 408-150 кГц; средневолновый - радиоволны длиной от 186,9 до 571,4м, что соответствует частотам 1605-525 кГц; коротковолновый -радиоволны длиной от 24,8 до 75,5 м, что соответствует частотам 12,1-3,95 МГц; ультракоротковолновый - радиоволны длиной от 4,11 до 4,56 м, что соответствует частотам 73-65,8 МГц,

Радиоволны УКВ диапазона называют также метровыми волнами; вообще же ультракороткими волнами называют все волны короче 10 м. В этом диапазоне ведутся телевизионные передачи, работают связные радиостанции, оборудованные на автомашинах пожарной охраны, такси, медицинского обслуживания населения на дому, безопасности уличного движения.

Коротковолновые радиовещательные станции неравномерно распределены по КВ диапазону: больше всего их работает на волнах длиной около 25, 31, 41 и 50 м. Соответственно этому коротковолновый радиовещательный диапазон подразделяется на 25, 31, 41 и 50-метровый поддиапазоны.

Согласно международному соглашению волна длиной 600 м (500 кГц) отведена для передачи сигналов бедствия кораблями в море - 808. На этой волне работают все морские аварийные радиопередатчики, на эту волну настроены приемники всех спасательных станций и маяков.

Публикация: Н. Большаков, rf.atnn.ru

Смотрите другие статьи раздела Начинающему радиолюбителю.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Эффективная защита от коррозии 21.06.2025

Коррозия - один из главных врагов железа и его сплавов, ежегодно причиняющий ущерб на миллиарды долларов в инфраструктуре, транспорте и промышленности. Существующие антикоррозионные решения, такие как цинковое покрытие, со временем теряют эффективность: они отслаиваются, повреждаются или дают микротрещины, открывая путь влаге и соли. На этом фоне ученые активно ищут способы сделать защиту от коррозии более стойкой, долговечной и экономичной. Группа исследователей из Института химии Еврейского университета в Иерусалиме предложила новый подход к решению этой задачи. В отличие от традиционных защитных покрытий, которые опираются лишь на физическую адгезию к металлу, их метод включает создание прочной химической связи на молекулярном уровне. Основа разработки - двухслойная структура, где первым наносится слой N-гетероциклических карбенов, а вторым - полимер высокой прочности. Карбены играют роль своеобразного "молекулярного суперклея", надежно соединяя металл и полимер в единую систе ...>>

Открыт p-волновый магнетизм 21.06.2025

Современная физика постоянно расширяет горизонты нашего понимания материи, и одним из самых перспективных направлений сегодня остаются исследования в области спиновых и магнитных состояний. В мире, где стремительно растут вычислительные нагрузки и потребность в энергоэффективных решениях, ученые ищут принципиально новые подходы к хранению и обработке информации. Одним из таких прорывов стало открытие нового типа магнетизма - так называемого p-волнового магнетизма, зафиксированного в лабораторно выращенном кристалле никелия йодида (NiI2). Международная команда исследователей, в которую вошли ученые Массачусетского технологического института (MIT), сумела создать сверхтонкие слои кристалла в условиях высокотемпературной печи. Как отмечает физик Риккардо Комина, никелий йодид оказался идеальной модельной системой для проверки теоретических предположений о существовании этого необычного состояния материи. При помощи поляризованного света исследователи наблюдали спиральную организацию эл ...>>

Социальные сети вредят здоровому сну 20.06.2025

В эпоху смартфонов и постоянного подключения ко всему, все больше людей сталкиваются с проблемами сна. Усталость по утрам, сложности с засыпанием и ощущение "разбитости" - частые жалобы, с которыми сталкиваются даже молодые и здоровые пользователи. Ученые давно предостерегают от употребления кофеина, алкоголя и использования гаджетов поздним вечером. Однако новое исследование добавило в этот список еще один вредный фактор: активность в социальных сетях перед сном. Команда исследователей из Университета Дюка под руководством специалиста по данным доктора Уильяма Мейерсона проанализировала поведение более 50 тысяч пользователей социальных сетей. Целью было выяснить, как время публикаций влияет на привычки сна. Результаты оказались неожиданно тревожными: люди, публиковавшие посты менее чем за час до сна, засыпали в среднем на три часа позже, чем те, кто этого не делал. Особенно заметным оказался эффект среди тех, кто размещал по нескольку постов подряд. Эти участники оставались акти ...>>

Случайная новость из Архива

Датчики изображения с пикселями 1 мкм 31.07.2015

Компания Samsung Electronics объявила о начале серийного выпуска датчиков изображения S5K3P3. По данным производителя, это первые в отрасли датчики изображения с пикселями размером 1 мкм, предназначенные для мобильных устройств. Другие похожие датчики имеют пиксели размером 1,2 мкм.

Как утверждается, используя новый датчик, можно уменьшить толщину модуля камеры на 20%, что актуально в свете нынешнего стремления производителей мобильных устройств к уменьшению их толщины. Говоря более конкретно, модуль камеры на базе S5K3P3 имеет толщину менее 5 мм, так что он не будет выступать над уровнем задней крышки тонкого смартфона.

В датчиках типа CMOS нашла применение фирменная технология ISOCELL, улучшающая качество изображения. Разрешение датчика изображения Samsung S5K3P3 - 16 Мп. В перспективе южнокорейская компания планирует предложить модели других разрешений.

Другие интересные новости:

▪ Черный кремний для эффективных солнечных панелей

▪ Можно ущипнуть бактерию

▪ Радужная оболочка глаза заменит PIN-код для банкомата

▪ Лазерные телевизоры Mitsubishi

▪ Huawei Ascend P1 - самый тонкий смартфон

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Инфракрасная техника. Подборка статей

▪ статья Авиакатастрофы. Основы безопасной жизнедеятельности

▪ статья Чем отличаются фразы, которые называются спунеризмами? Подробный ответ

▪ статья Игуасу. Чудо природы

▪ статья Средства для удаления волос. Простые рецепты и советы

▪ статья Исчезающий туз. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025