Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


УМЗЧ. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Усилители мощности транзисторные

Комментарии к статье Комментарии к статье

Предлагаемый УМЗЧ (рис.1) построен на базе операционного усилителя КР544УД2.

Параметры УМЗЧ

Рабочий диапазон частот, Гц, не менее 15...30000
Нелинейность амплитудно-частотной характеристики, дБ, не более 2
Номинальная мощность на нагрузке:
- 4 Ом, Вт 40
- 8 Ом, Вт 20
Коэффициент гармоник, при Рном, % не более 0,01
Номинальное входное напряжение, В 0,7
Входное сопротивление, кОм, не менее 47
Выходное сопротивление, Ом, не более 0,03
Относительный уровень шумов и фона, дБ, не более -86
Номинальные напряжения питания, В ±30

Операционный усилитель DA1 питается через транзисторы VT1 и VT2, которые снижают напряжения питания до значений, задаваемых делителями R3, R4 и R5, R6. Напряжения смещения транзисторов VT3, VT4 определяются падением напряжения на резисторах R8, R9. В случае необходимости DA1 может быть отбалансирован при помощи делителя R14, R15.

УМЗЧ
(нажмите для увеличения)

Ток покоя предоконечных транзисторов VT3, VT4 определяет напряжение смещения на резисторах R11, R12 (0,35...0,4 В), которое при малых уровнях сигналов поддерживает транзисторы VT5, VT6 в закрытом состоянии даже при повышении напряжения питания на 10...15% или перегреве на 60...80°. Резисторы R11, R12 одновременно стабилизируют режим работы предоконечного каскада VT3, VT4, создавая местные отрицательные обратные связи (ООС) по току. Общая ООС по напряжению формируется делителем R7, R10.

Фильтры низких частот R2, С2 и R13, С7 с частотами среза в области 60 кГц предотвращают самовозбуждение усилителя на высоких частотах. Конденсаторы С5, С6 корректируют фазочастотную характеристику предоконечного и оконечного каскадов. Катушка L1 повышает стабильность работы усилителя при работе на нагрузку, обладающую повышенной реактивностью.

Сборка и монтаж. При сборке конструкции необходимо пользоваться паяльником с хорошей изоляцией и мощностью не более 40 Вт. Чертеж печатной платы УМЗЧ приведен на рис.2, а сборочный чертеж - на рис.3.

Порядок сборки следующий: перемычка S1, резисторы, конденсаторы, катушка L1, операционный усилитель (DA1), транзисторы VT1...VT4, после предварительной регулировки - транзисторы VT5, VT6. Бескаркасная катушка L1 содержит 10 витков любого медного обмоточного провода диаметром 1...2 мм. Ее наматывают на временной оправке диаметром 4...6 мм, например на тонкой шариковой ручке или карандаше.

С целью минимизации нелинейных искажений транзисторы VT3...VT6 должны подключаться к печатной плате проводниками длиной не более 50 мм.

Оптимальная конструкция УМЗЧ приведена на рис.3. С помощью двух уголков плату привинчивают к теплоотводу, а транзисторы впаивают непосредственно в плату. Удобнее всего это делать в следующей последовательности:

- разметьте теплоотвод, просверлите необходимые отверстия и нарежьте в них резьбу М3. Конструкция теплоотвода может быть произвольной, однако площадь его поверхности для максимальной выходной мощности 60 Вт должна быть не менее 500 см2;

- привинтите плату к теплоотводу;

- установите транзисторы VT3, VT4 в соответствующие отверстия платы, после чего привинтите их к теплоотводу, а затем припаяйте их;

- после предварительной регулировки аналогично смонтируйте транзисторы VT5, VT6;

- после этого припаяйте провода для подключения питания и нагрузки сечением не менее 0,5 мм2.

Наладка. Для наладки усилителя необходимы осциллограф, низкочастотный генератор, тестер, эквивалент нагрузки и биполярный источник питания с выходным напряжением ±30 В при токе нагрузки не менее 4 А.

УМЗЧ

Высокая стабильность УМЗЧ позволяет питать его от простейшего нестабилизированного источника питания. Питание на усилитель при его регулировке и эксплуатации подают через предохранители на 5 А. Регулировку начинают при отключенных транзисторах VT5, VT6 и закороченном входе (точки 1 и 2 соединены).

К выходу УМЗЧ без нагрузки подключите осциллограф в режиме максимальной чувствительности и кратковременно подайте питание. Если на выходе нет переменного напряжения, т.е. усилитель не возбуждается, замерьте режимы работы VT3, VT4; напряжения на выводах 7 и 4 DA1. Они должны быть в пределах 13,4...14 В и отличаться между собой не более чем на 0,3 В. Падения напряжения на резисторах R11, R12 должны быть в пределах 0,35...0,4 В. Если они отличаются больше чем на 10%, необходимо подобрать резисторы R8, R9. При этом их новые значения по-прежнему должны быть примерно равны между собой.

В случае самовозбуждения усилителя следует увеличить емкости конденсаторов С5, С6, либо, разрезав до-рожку, соединяющую выводы 1 и 8

DA1 подпаять к ним конденсатор типа КМ-5 емкостью 5...10 пФ.

Измерьте постоянное напряжение на выходе и, если оно превышает 30 мВ, отбалансируйте DA1. Для этого впаяйте переменный резистор сопротивлением 100...200 кОм вместо резисторов R14 и R15 (средним выводом в точку их соединения с выводом 7 DA1). Вращением оси этого резистора добейтесь нужного значения выходного напряжения, замерьте полученные величины сопротивлений и впаяйте соответствующие постоянные резисторы R14 и R15. Нежелательно использовать в качестве балансировочного подстроечный резистор - вследствие старения этого резистора возможно нарушение балансировки усилителя в процессе его эксплуатации.

Установите на теплоотвод и на плату транзисторы VT5, VT6. Кратковременно подав питание, убедитесь, что УМЗЧ не возбуждается.

Подключите к выходу УМЗЧ резистор сопротивлением 16 Ом мощностью 10...15 Вт, и подайте от генератора на вход (точки 1 и 2 разъедините) сигнал с уровнем 0,05 В частотой 1 кГц.

Проверьте симметричность ограничения обеих полуволн синусоиды.

При необходимости, окончательной балансировкой DA1 добейтесь минимального постоянного напряжения на выходе УМЗЧ.

Подключите номинальную нагрузку - резистор сопротивлением 4...8 Ом мощностью не менее 50 Вт (например реостат) - и еще раз измерьте основные характеристики УМЗЧ.

После окончательной регулировки подключите источник музыкального сигнала и реальную акустическую систему.

Для работы усилителя мощности от источников сигнала со стандартным линейным выходом 250 мВ (магнитофон, проигрыватель и т.п.) следует использовать предварительный усилитель с возможностью регулировки громкости и тембра.

Если источник входного сигнала собран по схеме с однополярным питанием, при включении усилителя могут прослушиваться "щелчки" в акустических системах. Для устранения этого явления можно собрать схему задержки подключения акустической системы и защиты динамиков от короткого замыкания, например по схемам, приведенным в [1...3].

Литература

  1. Радио, 1990, №8. с.63
  2. Радио, 1991, №1, с.59
  3. Радио, 1992, №4, с.37

Автор: А.Фефелов, г.Белокуриха; Публикация: Н. Большаков, rf.atnn.ru

Смотрите другие статьи раздела Усилители мощности транзисторные.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 12.11.2025

Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам. Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта. Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>

Дефицит кислорода усиливает выброс закиси азота 12.11.2025

Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски. Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота. В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Случайная новость из Архива

Любая одежда станет компьютером 12.07.2015

Когда французский изобретатель Жозеф Мария Жаккар изобрел ткацкий станок для узорчатых материй, ставший впоследствии известным как машина Жаккарда, он не подозревал, что его фамилия станет именем нарицательным для обозначения особого вида ткани. И уж тем более он не подозревал о том, что "жаккард" станет названием секретного совместного проекта компаний Google и Levi's.

Впрочем, уже не секретного. На только что закончившейся ежегодной конференции разработчиков Google I/O 2015 представители обеих компаний объявили о "Проекте Жаккард". Его реализацией занимается подразделение компании Google по передовым технологиям и проектам, ответственное за Project Ara - инициативу по разработке бесплатной платформы с открытым аппаратным обеспечением для создания модульного смартфона, а также Project Tango - новый тип смартфона и планшета с функцией 3D-визуализации окружающего пространства.

Задачей "Проекта Жаккард" является невидимая интеграция компьютеров в предметы, материалы и одежду. В результате любые предметы обихода, начиная с мебели и кончая свитерами, смогут использоваться в качестве интерактивной поверхности со своими трекпадами, кнопками и т.п. Для этого пришлось создать специальные нити-проводники из сверхтонких металлических сплавов и материалов вроде синтетического хлопка, полиэстера или шелка и вплетать их в обычную ткань, причем таким образом, чтобы ее нельзя было отличить от "нормальной" ткани.

Предметы будут получать информацию непосредственно с поверхности материала, использованного для их создания, и передавать ее на находящийся поблизости смартфон или компьютер с помощью потребляющей мало энергии системы Wi-Fi. Для этого, помимо ткани, инженеры "Проекта Жаккард" разработали микросенсоры размером с пуговицу, которые в состоянии улавливать прикосновения и различные жесты и передавать их на другое устройство.

Кстати, специалистам Google не первым пришла в голову идея "умной ткани". В прошлом году ученые университета Фудан объявили о создании литий-ионной технологии для "аккумуляторного волокна" с помощью углеродных нанотрубок. Но Google наверняка первым доведет дело до коммерческого применения. Что можно пожелать и другому проекту Google под названием Soli, основанном на идеях Льва Термена, который в 1919 г. изобрел терменвокс - музыкальный инструмент, "управляемый" с помощью жестов. Как и будущий гаджет Google.

Другие интересные новости:

▪ Человек может видеть в инфракрасном спектре

▪ Новые импульсные стабилизаторы

▪ Может быть, в центре Солнца есть темная материя

▪ Смарт-жилетка Carhartt X-1

▪ Зарядные устройства помогут электросетям

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Регуляторы мощности, термометры, термостабилизаторы. Подборка статей

▪ статья Птица-тройка. Крылатое выражение

▪ статья Что такое мидии? Подробный ответ

▪ статья Тимьян обыкновенный. Легенды, выращивание, способы применения

▪ статья Многопрограммный таймер-часы-термометр. Энциклопедия радиоэлектроники и электротехники

▪ статья Как продеть тонкий провод через малое отверстие? Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025