Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Сверлильный станок. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Технологии радиолюбителя

Комментарии к статье Комментарии к статье

Многие радиолюбители используют при изготовлении печатных плат микродрели. Предлагаемая разработка позволяет создать на основе микродрели станок для сверления печатных плат. Для изготовления станка требуются навыки работы с металлом и минимальный набор инструментов: ручная электродрель, ножовка по металлу, напильники, тиски и ножницы для резки металла. Из материалов - листовая сталь, алюминий, пластик, крепеж. В общем, все то, что есть практически у каждого радиолюбителя. Микродрель закрепляют на кронштейне неподвижно, для подачи обрабатываемого материала служит подвижный столик.

Электрическая схема станка показана на рис. 1. Для управления электродвигателем служит конечный выключатель SF1, механически связанный с рычагом подъема столика. В исходном состоянии станка под действием рычага подъема контакты 1 и 2 конечного выключателя замкнуты, что соответствует остановленному двигателю M1. При нажатии на рычаг контакты 1-2 разомкнутся, а контакты 1-3 замкнутся. Реле K1 сработает и соединит минусовый вывод двигателя M1 с коллектором транзистора VT1, но транзистор пока останется закрытым, поскольку конденсатор C1 разряжен. Через резистор R3 конденсатор медленно зарядится, и транзистор постепенно откроется, что обеспечит плавный пуск двигателя. По окончании сверления и отпускании рычага конечный выключатель SF1 возвратится в состояние с замкнутыми контактами 1-2 и разомкнутыми 1-3. Конденсатор C1 разрядится через резистор R2, а параллельно двигателю, отключенному от коллектора транзистора VT1, будет подключен резистор R5, обеспечивающий эффективное торможение вала двигателя.

Сверлильный станок
Рис. 1. Электрическая схема станка

На схеме указаны ориентировочные значения емкости конденсатора C1 и сопротивления резистора R5, они зависят от желаемых темпов разгона и торможения конкретного электродвигателя. Увеличение емкости увеличит длительность разгона, а уменьшение сопротивления резистора R5 ускорит остановку вращающегося сверла. Светодиод EL1 белого свечения освещает место сверления.

Реле K1 следует выбирать с номинальным рабочим напряжением обмотки 12 или 24 В и допустимым коммутируемым током 1...2 А. Это может быть, например, SRD-12VDC-SL-C (сопротивление обмотки - 320 Ом) или SRD-24VDC-SL-C (сопротивление обмотки - 1280 Ом). При использовании реле на 12 В последовательно с его обмоткой включите резистор с сопротивлением, равным ее сопротивлению постоянному току.

Для питания станка подойдет любой источник постоянного напряжения 24...30 В при токе нагрузки 1 A. Если имеется готовая микродрель с узлом управления и питания, ее можно с успехом использовать в предлагаемой конструкции.

Изготовление механической части станка я начал с закрепления электродвигателя на алюминиевой пластине размерами 110x55x2,5 мм (рис. 2). Скоба крепления вырезана из металлического листа толщиной 0,5 мм. Между корпусом двигателя и пластиной установлена пластмассовая подкладка (крышка пенала для графитовых стержней). Винты крепления подкладки предотвращают осевое перемещение двигателя.

Сверлильный станок
Рис. 2. Крепление электродвигателя станка на алюминиевой пластине

Эскиз конструкции столика для обрабатываемой платы и механизма его вращения и подъема показан на рис. 3. Применены детали лентопротяжного механизма кассетного магнитофона - маховик 2 с тонвалом 4 и его подшипником 8. При отсутствии кассетного магнитофона, который не жалко разобрать на запчасти, для изготовления подвижного столика можно воспользоваться, например, подходящими деталями от видеоплейера.

Сверлильный станок
Рис. 3. Эскиз конструкции столика

Подшипник 8 прикреплен к верхней стенке основания 11 станка, маховик служит основанием столика 1, а тонвал - осью вращения столика и направляющей для его перемещения по высоте. На тонвал надета пружина 3 от шариковой авторучки, которая упирается в подпятник 6, закрепленный стопорным винтом 5. Такая конструкция практически не имеет радиального люфта и обеспечивает перпендикулярность сверла плоскости сверления в любом положении столика.

Сам столик 1 изготовлен из листа пластмассы толщиной 4 мм и прикреплен к маховику 2 тремя винтами с потайными головками.

Рычаг подъема столика 7 изготовлен из металлического стержня сечением 8x4 мм. Как уже было сказано, в исходном положении (при опущенном столике) он нажимает на конечный выключатель 10 (SF1 - согласно схеме на рис. 1), что удерживает электродвигатель в выключенном состоянии. При нажатии на вынесенную за пределы основания 11 рукоятку рычаг 7 поворачивается вокруг оси 9, отпускает конечный выключатель 10 и поднимает столик. Ход столика - 5...10 мм.

В качестве основания станка я использовал прямоугольный алюминиевый корпус G0247 (URL: http://gainta.com/pdf/g0247.pdf) размерами 187x118x56,5 мм из числа продаваемых в магазинах радиодеталей. Конечно, при наличии листового алюминия основание можно изготовить и самостоятельно.

Сначала соберите на основании описанный выше узел подвижного столика и измерьте необходимую высоту расположения узла электродвигателя. После этого столик можно снять, чтобы он не мешал изготовлению кронштейна, на котором предстоит закрепить узел электродвигателя.

Кронштейн, обозначенный на рис. 4 цифрой 5, сделайте из металлического П-образного профиля (швеллера). Он должен обеспечить перпендикулярность зажатого в установленный на валу электродвигателя патрон сверла к поверхности столика и удобное расстояние между этой поверхностью в опущенном состоянии и концом сверла. Заготовку кронштейна 5 установите на боковой стенке основания 1 строго напротив столика и закрепите ее винтами. Затем, сделав пропилы в боковинах профиля, изогните заготовку под углом приблизительно 60о к плоскости основания и закрепите отогнутую часть в этом положении опорой 6.

Сверлильный станок
Рис. 4. Внешний вид устройства

С помощью слесарного угольника отметьте на кронштейне 5 место второго изгиба с таким расчетом, чтобы зажатое в патрон сверло оказалось на линии, проходящей через центр столика. Изогните кронштейн в этом месте, зафиксируйте изгиб накладками 3 и отрежьте излишек заготовки. Прикрепите к кронштейну узел электродвигателя 2, а также осветительный плафон 4 со светодиодом EL1. Плату узла управления можно установить на кронштейне или в любом свободном месте "подвала" основания станка.

Изготовленный мной станок позволяет сверлить платы с максимальным размером до 200 мм. К моменту написания статьи на нем была просверлена плата узла управления и еще несколько печатных плат, в том числе с печатными проводниками, расположенными с двух сторон.

В чем я вижу преимущества станка над ручной микродрелью? Просверленные отверстия получаются строго перпендикулярными поверхности платы. Намного удобнее позиционировать сверло в центре будущего отверстия. Сверла малого (менее 1 мм) диаметра значительно реже ломаются, поскольку в процессе сверления к ним не прикладываются изгибающие усилия.

Автор: Н. Салимов

Смотрите другие статьи раздела Технологии радиолюбителя.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Ранняя Вселенная не была ледяной 28.11.2025

Понимание того, как формировались первые структуры во Вселенной, требует взгляда в эпохи, в которых не существовало ни звезд, ни галактик, ни привычных нам источников света. Научные группы по всему миру пытаются восстановить картину тех времен при помощи слабейших радиосигналов, оставшихся от водорода, который наполнял космос вскоре после Большого взрыва. Новые результаты, полученные на радиотелескопе Murchison Widefield Array в Австралии, неожиданным образом меняют представление об этих ранних этапах. Сразу после Большого взрыва, произошедшего около 13,8 миллиарда лет назад, пространство стремительно расширялось и остывало. Через несколько сотен тысяч лет образовался нейтральный водород, и началась так называемая эпоха тьмы, когда Вселенная была лишена источников излучения. Лишь значительно позже гравитация собрала газ в плотные области, где зародились первые звезды и ранние черные дыры, а их интенсивное излучение привело к реионизации водорода и окончательному появлению света. ...>>

Устройство идеальной очистки воздуха 28.11.2025

Качество воздуха в закрытых помещениях давно стало важнейшим фактором здоровья, особенно в городах, где люди проводят подавляющую часть времени внутри зданий. В последние годы исследователи уделяют все больше внимания именно тем технологиям, которые способны задерживать или разрушать вредоносные частицы до того, как они попадут в дыхательные пути человека. Одним из таких новаторских направлений стала разработка инженеров Университета Британской Колумбии в Оканагане, которые предложили принципиально иной подход к очистке воздуха в присутствии людей. По словам профессора Школы инженерии доктора Санни Ли, традиционные персонализированные вентиляционные системы действительно могут улучшать качество воздуха вокруг пользователя, однако их принцип работы имеет ряд ограничений. Человек вынужден находиться в строго определенной зоне, а одновременное использование одной системы несколькими людьми снижает эффективность. Кроме того, непрерывный поток сухого очищенного воздуха способен вызывать ...>>

Ощущение текстуры через экран гаджета 27.11.2025

Гаджеты научились передавать изображение и звук с впечатляющей реалистичностью, но тактильные ощущения по-прежнему остаются недоступными для полноценной цифровой симуляции. Именно поэтому инженеры и исследователи во всем мире стремятся создать технологии, которые позволят "почувствовать" виртуальный объект так же естественно, как и настоящий. Новая разработка специалистов Северо-Западного университета США стала одним из самых заметных шагов в этом направлении. Возглавлявшая исследование аспирантка Сильвия Тан (Sylvia Tan) подчеркивает, что прикосновение остается последним фундаментальным чувственным каналом, для которого пока нет зрелого цифрового аналога. По ее словам, если визуальные и звуковые интерфейсы давно обеспечивают высокую степень реалистичности, то осязание лишь начинает приближаться к этому уровню. В недавней публикации в журнале Science Advances Тан отмечает, что новая технология способна изменить само представление о взаимодействии человека с устройствами. Разработ ...>>

Случайная новость из Архива

В метеорите обнаружена самая древняя магнитная запись 17.04.2018

Группа исследователей Великобритании, Германии и Норвегии обнаружила, что железосодержащий материал под названием оливин, из которого состоит большинство метеоритов, содержит в себе "записи" магнитных полей, существовавших во время формирования Солнечной системы, порядка 4.6 миллиарда лет назад. Это является удивительным фактом, ведь оливин имеет неоднородные магнитные свойства, и он не очень хорошо подходит для хранения информации в магнитном виде. Тем не менее, изучение данного феномена может привести к пониманию роли магнитных полей в процессе формирования объектов Солнечной системы из протопланетарного диска.

"Результаты наших исследований показывают, что следы магнитных полей, существовавших во время "рождения" Солнечной системы, содержатся в материале метеоритов, имеющихся в наших коллекциях" - рассказывает Джей Шах (Jay Shah), ведущий исследователь, - "Получив картину остаточной намагниченности мы можем получить информацию о древних магнитных полях, которые сыграли свою роль в формировании Солнечной системы из протопланетарного диска".

В современной науке есть область, называемая палеомагнетизмом, главными объектами исследований которой являются древние скалы и другие материалы, которые прошли через цикл быстрого охлаждения во время их формирования. В недрах этих материалов сохранились образы намагниченности, которые являются отражением существовавших на момент их формирования магнитных полей. Расшифровав эту информацию, исследователи получают представление о магнитных полях и о некоторых процессах, в которых эти магнитные поля принимали участие.

Основой палеомагнетизма является так называемая теория доменов Неля, согласно которой однородно намагниченные зерна материала могут сохранять свои свойства в геологическом масштабе времени. Однако теорема Неля ничего не говорит о неоднородно намагниченных зернах материала, а именно такая форма намагниченности и является самой информативной. Некоторые из ученых исследовали этот вопрос и нашли, что состояние намагниченности сохраняется долго и при ее неоднородном характере, тем не менее, точный ответ на этот вопрос так и не найден на сегодняшний день.

Недавно полученные результаты указывают на то, что железосодержащие материалы могут сохранять неоднородную намагниченность на протяжении более 4 миллиардов лет. Во время исследований ученые нагрели оливин выше 300 градусов Цельсия, до самой высокой возможной температуры, при которой зерна магнитного материала еще сохраняют свои изначальные свойства. А для получения данных исследователи использовали несколько самых современных методов измерения и съемки карт распределения магнитных полей зернышек оливина, которые имеют диаметр в несколько сотен нанометров.

"Я надеюсь, что наши исследования позволят нам лучше понять природу и значение информации, скрытой в сложных образах древнего остаточного намагничивания" - рассказывает Джей Шах, - "Это, в свою очередь, позволит нам исследовать магнитные поля, существовавшие в Солнечной системе в то время, когда Земля только начинала формироваться".

Другие интересные новости:

▪ Антибиотики способствуют ожирению

▪ Итальянский секрет долголетия

▪ Электроника следит за пульсом и частотой дыхания пациентов

▪ Бесплатные компьютеры Micro Bit для обучения программированию

▪ Цемент ускорит восстановление коралловых рифов

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Гирлянды. Подборка статей

▪ статья Эпикур. Знаменитые афоризмы

▪ статья Ползают ли угри по земле? Подробный ответ

▪ статья Кмин щетинистый. Легенды, выращивание, способы применения

▪ статья Автоматическое отключение усилителя от сети. Энциклопедия радиоэлектроники и электротехники

▪ статья Чудо на ножках. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025