Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Стабилизатор температуры жала бытового паяльника. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Технологии радиолюбителя

Комментарии к статье Комментарии к статье

Это несложное для повторения устройство обеспечивает стабильность заданной регулятором (переменным резистором) температуры стержня электропаяльника при изменениях сетевого напряжения. В качестве датчика температуры применена миниатюрная лампа накаливания.

Предлагаемое вашему вниманию устройство - это результат желания автора получить качественные паяные соединения бытовым электропаяльником, рассчитанным для работы от сетевого напряжения 220 В при его колебаниях. На стержне паяльника закреплен датчик температуры, по сигналам с которого устройство поддерживает температуру нагрева стержня на заданном уровне.

Стабилизатор температуры жала бытового паяльника
Рис. 1. Схема стабилизатора (нажмите для увеличения)

Схема стабилизатора приведена на рис. 1. Стабилизатор состоит из двух узлов: измерительного и регулирующего, которые гальванически развязаны сетевым трансформатором Т1 и оптроном U1. Измерительный узел собран на ОУ DA2, включенном как компаратор, и получает питание от вторичной понижающей обмотки сетевого трансформатора. Переменное напряжение с нее выпрямляется диодным мостом VD1, сглаживается конденсатором С3 и далее стабилизируется на уровне +12 В микросхемой DA1 - параллельным стабилизатором напряжения.

Напряжение на инвертирующем входе ОУ DA2 определяется делителем из резисторов R7, R8 и лампы накаливания EL1, ток через который около 3 мА задан резисторами R7, R8. Как известно, с изменением температуры сопротивление нити накаливания меняется. Это свойство и позволило применить лампу как датчик температуры (далее датчик), закрепив его на стержне паяльника. Температура нагрева стержня паяльника регулируется переменным резистором R6, включенным в цепь другого резистивного делителя R3R4R5. Оба делителя образуют измерительный мост. Пределы регулировки температуры устанавливают резистором r4.

При изменении температуры датчика происходит разбаланс моста и на выходе ОУ DA2 напряжение изменяется. Выход ОУ (вывод 6) управляет светодиодом HL1 и оптроном U1 регулирующего узла, собранного на мощном полевом транзисторе VT1. Оптрон управляет напряжением затвор-исток полевого транзистора VT1. Когда температура датчика возрастает, его сопротивление увеличивается и на выходе ОУ появляется напряжение низкого уровня, светодиод HL1 гаснет, сигнализируя о повышении температуры выше заданного переменным резистором R6 порога, а излучающий диод оптрона U1 включается, открывая его фототранзистор. Открытый фототранзистор замыкает выводы затвора и истока полевого транзистора VT1, его канал закрывается, и на нагреватель паяльника поступают только половины периода напряжения сети через встроенный в транзистор диод.

Стержень паяльника и датчик начинают остывать. Через некоторое время снижение температуры датчика приводит к появлению напряжения высокого уровня на выходе ОУ светодиод HL1 загорается, сигнализируя теперь о температуре ниже заданного порога, а излучающий диод оптрона выключается. Транзистор VT1 открывается напряжением 12 В на затворе, и на нагреватель подается полное напряжение сети. Стержень паяльника начинает нагреваться. Далее процесс повторяется. Напряжение на стабилитрон VD2 для открывания полевого транзистора VT1 подается от сети через выпрямительный диод VD3 и гасящий резистор R12. Конденсатор С5 - сглаживающий.

Стабилизатор температуры жала бытового паяльника
Рис. 2. Чертеж печатной платы

Чертеж печатной платы представлен на рис. 2. Она выполнена из односторонне фольгированного стеклотекстолита и помещена в корпус от маломощного блока питания на место изъятой из него платы выпрямителя со сглаживающим конденсатором и движковым переключателем. Сетевой трансформатор блока питания использован в качестве трансформатора Т1. Все резисторы установлены перпендикулярно плате. Под ось переменного резистора R6, выступающую наружу, в корпусе просверлено отверстие. Электрическое соединение платы с нагревателем и датчиком выполнено через разъем ОНЦ-ВГ-11-6/16 (номера его контактов показаны на рис. 2). Для разъема в корпусе сделано соответствующее отверстие. Сам разъем на схеме не показан. Транзистор VT1 закреплен вне платы на теплоотводе - медной пластине размерами 90x12x1 мм, изогнутой буквой "П" вокруг трансформатора. При мощности паяльника не более 25 Вт теплоотвод не требуется. Варистор RU1 монтируют непосредственно на выводах транзистора VT1.

В качестве датчика применена малогабаритная лампа накаливания серии DL1250 (напряжение - 12 В, ток - 50 мА) размерами 3,2x6 мм с длиной выводов 25 мм. В холодном состоянии сопротивление нити - около 30 Ом. При температуре 200...230 °С - около 50 Ом. Токоподводящие жаропрочные провода диаметром 0,2...0,25 мм и длиной 250 мм, подверженные воздействию высокой температуры, изготовлены из константановой проволоки и проложены вдоль корпуса паяльника. Соединение проводов с лампой выполнено сваркой, иначе температура стержня со временем будет "плавать". Проволоку для проводов можно смотать с мощных низкоомных резисторов ПЭВ, С5-35. Подойдет и провод из нихрома, но у него в два раза выше удельное сопротивление и его труднее надежно присоединить. Сваренные выводы изолируют отрезками фторопластовой трубки от провода МГТФ и обматывают фторопластовой лентой ФУМ-О (PTFE) для сантехработ. Далее крепят, обматывая этой же лентой, прижатую к стержню нагревателя лампу-датчик, и в двух-трех местах вдоль корпуса - токоподводящие провода. На медном стержне паяльника для лампы желательно сделать небольшую выемку. Особое внимание следует обратить на надежность электроизоляции токоподводящих проводов и мест сварки от корпуса.

ОУ LM301A - общего применения, заменим, например, на КР140УД7, К153УД2, LM741. Параллельный стабилизатор TL431 можно заменить стабилитроном КС212Ж, КС212В или его импортным аналогом. Транзистор VT1 на рабочее напряжение не менее 500 В заменим на MTP6N60, BUZ90 или отечественные серий КП707, КП726.

Варистор RU1 допускается не ставить. Диодный мост W08M можно заменить собранным из отдельных маломощных диодов, например, 1N4148, КД521А. Оксидные конденсаторы - импортные, С2, С4 - керамические КМ. Резистор R6 - СП4-1. Постоянные резисторы - любые выводные. Лампу DL1250 допустимо заменить на DL1265 с номинальным током 65 мА при напряжении 12 В (см. ниже).

Стабилизатор температуры жала бытового паяльника
Рис. 3. Внешний вид стабилизатора

Внешний вид собранного стабилизатора показан на рис. 3.

Налаживание стабилизатора проводят в следующей последовательности. Движок переменного резистора R6 устанавливают в нижнее по схеме положение, а вместо резистора R8 временно подключают реостатом переменный (или подстроечный) резистор сопротивлением 3 кОм. При включении стабилизатора в сеть светодиод HL1 не должен светиться. Далее уменьшают сопротивление временно подключенного переменного резистора до включения светодиода. Измеряют сопротивление введенной в цепь части резистора и впаивают вместо него постоянный резистор близкого сопротивления. После этого, в случае необходимости, подбирают резистором R4 желаемый интервал температуры нагрева. На сопротивление датчика температуры помимо нити накала лампы, особенно при ее замене, оказывают влияние и соединительные провода, поэтому сопротивления резисторов R4, R8 могут несколько отличаться от указанных на схеме.

Стабилизатор испытан в работе с паяльниками мощностью 25, 40 и 90 Вт. Нестабильность температуры составила 15...20 оС. В основном она зависит от качества теплового контакта между баллоном лампы-датчика и стержнем паяльника. У автора стабилизатор с паяльником мощностью 25 Вт эксплуатируется уже не один год. Необходимости в подстройке температуры практически не возникает.

Наличие датчика в стеклянном баллоне, смонтированном на стержне паяльника, требует, конечно, соблюдения некоторой осторожности при работе во избежание его механического повреждения. Желательна специальная подставка.

Автор: А. Звирбулис

Смотрите другие статьи раздела Технологии радиолюбителя.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Искусственная кожа для эмуляции прикосновений 15.04.2024

В мире современных технологий, где удаленность становится все более обыденной, сохранение связи и чувства близости играют важную роль. Недавние разработки немецких ученых из Саарского университета в области искусственной кожи представляют новую эру в виртуальных взаимодействиях. Немецкие исследователи из Саарского университета разработали ультратонкие пленки, которые могут передавать ощущение прикосновения на расстоянии. Эта передовая технология предоставляет новые возможности для виртуального общения, особенно для тех, кто оказался вдали от своих близких. Ультратонкие пленки, разработанные исследователями, толщиной всего 50 микрометров, могут быть интегрированы в текстильные изделия и носиться как вторая кожа. Эти пленки действуют как датчики, распознающие тактильные сигналы от мамы или папы, и как исполнительные механизмы, передающие эти движения ребенку. Прикосновения родителей к ткани активируют датчики, которые реагируют на давление и деформируют ультратонкую пленку. Эта ...>>

Кошачий унитаз Petgugu Global 15.04.2024

Забота о домашних животных часто может быть вызовом, особенно когда речь заходит о поддержании чистоты в доме. Представлено новое интересное решение стартапа Petgugu Global, которое облегчит жизнь владельцам кошек и поможет им держать свой дом в идеальной чистоте и порядке. Стартап Petgugu Global представил уникальный кошачий унитаз, способный автоматически смывать фекалии, обеспечивая чистоту и свежесть в вашем доме. Это инновационное устройство оснащено различными умными датчиками, которые следят за активностью вашего питомца в туалете и активируются для автоматической очистки после его использования. Устройство подключается к канализационной системе и обеспечивает эффективное удаление отходов без необходимости вмешательства со стороны владельца. Кроме того, унитаз имеет большой объем смываемого хранилища, что делает его идеальным для домашних, где живут несколько кошек. Кошачий унитаз Petgugu разработан для использования с водорастворимыми наполнителями и предлагает ряд доп ...>>

Привлекательность заботливых мужчин 14.04.2024

Стереотип о том, что женщины предпочитают "плохих парней", долгое время был широко распространен. Однако, недавние исследования, проведенные британскими учеными из Университета Монаша, предлагают новый взгляд на этот вопрос. Они рассмотрели, как женщины реагируют на эмоциональную ответственность и готовность помогать другим у мужчин. Результаты исследования могут изменить наше представление о том, что делает мужчин привлекательными в глазах женщин. Исследование, проведенное учеными из Университета Монаша, приводит к новым выводам о привлекательности мужчин для женщин. В рамках эксперимента женщинам показывали фотографии мужчин с краткими историями о их поведении в различных ситуациях, включая их реакцию на столкновение с бездомным человеком. Некоторые из мужчин игнорировали бездомного, в то время как другие оказывали ему помощь, например, покупая еду. Исследование показало, что мужчины, проявляющие сочувствие и доброту, оказались более привлекательными для женщин по сравнению с т ...>>

Случайная новость из Архива

Мягкий робот-рыба 21.03.2014

Ученые Массачусетского технологического института продемонстрировали прототип мягкого робота-рыбы, перемещающегося в воде подобной настоящей особи. Мягкие роботы, имеющие корпус из силикона и перемещающиеся благодаря движению жидкости (или газа) в каналах внутри корпуса, стали довольно популярным направлением исследований. Новостям о достижениях в данной области посвящен новый журнал Soft Robotics (Мягкие роботы).

В первом номере Soft Robotics, вышедшем в этом месяце, опубликована статья об изобретении ученых Массачусетского технологического института. Первый прототип робота-рыбы был создан командой исследователей, включая профессора Даниэлу Рус (Daniela Rus), аспиранта Эндрю Марчезе (Andrew Marchese) и научного сотрудника Кагдаса Онала (Cagdas D. Onal).

Движение туловища робота-рыбы обеспечиваются с помощью порционного высвобождения углекислого газа из емкости, находящейся в брюшной полости. Пропускание газа по каналам с одной стороны корпуса робота вызывает сокращение туловища и изгиб хвоста в противоположную сторону. Робот обладает полной автономностью. Благодаря конструктивным особенностям он способен осуществить поворот на 100 градусов за доли секунды.

Каждая из половин "рыбьего хвоста" имеет лишь два параметра для осуществления контроля - диаметр сопла, через которое газ выпускается в канал, и продолжительность времени, в течение которого оно открыто. Рус утверждает, что угол изгиба хвоста зависит от продолжительности накачки газом, а скорость движения робота определяется диаметром сопла. Это, по словам Рус, напоминает разграничение, наблюдаемое биологами у настоящих рыб.

Робот-рыба способен осуществить 20-30 маневров, в зависимости от угла изгиба хвоста и скорости движения, прежде чем будет исчерпан запас углекислого газа. "Робот создан для оценки производительности и не рассчитан на длительную работу,- сообщила Даниэла Рус.- Следующим этапом будет создание на основе нынешней системы устройства с более продолжительным периодом работы в сочетании с нынешней производительностью".

В дальнейшем предполагается заменить в системе движения робота углекислый газ на воду. Кстати, некоторые детали робота-рыбы изготовлены с помощью 3D-принтера.

Другие интересные новости:

▪ Смартфон Nokia C5-03

▪ Графен становится сверхпроводником

▪ Ткань слышит звук

▪ Цифровое надгробье

▪ ИИ-копирайтер от Alibaba

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Электроснабжение. Подборка статей

▪ статья Они жили долго и умерли в один день. Крылатое выражение

▪ статья Что такое первая космическая скорость? Подробный ответ

▪ статья Органы контроля и надзора за безопасностью и охраной труда в РФ

▪ статья Универсальный пробник электрика. Энциклопедия радиоэлектроники и электротехники

▪ статья Импульсный БП - из зарядного устройства. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024