Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Ламинатор для изготовления печатных плат. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Технологии радиолюбителя

Комментарии к статье Комментарии к статье

Многие радиолюбители давно уже применяют технологию термопереноса рисунка печатных проводников, напечатанного на бумаге лазерным принтером, на фольгу заготовки будущей платы с помощью обычного утюга. К сожалению, пользуясь таким инструментом, очень сложно достичь оптимального прижатия бумаги к заготовке платы и идеально выдержать температуру, необходимую для переноса расплавленного тонера на фольгу. Процесс приходится, как правило, много раз повторять, опытным путем добиваясь приемлемого качества рисунка на фольге.

Сегодня у многих радиолюбителей имеются не вполне исправные или морально устаревшие и давно не используемые по назначению лазерные принтеры. Такой аппарат с успехом может послужить основой для изготовления ламинатора, обеспечивающего надежный и высококачественный перенос рисунка.

Идея изготовить самодельный ламинатор для термопереноса рисунка с бумаги на плату из фольгированного диэлектрика возникла у автора при ремонте очередного лазерного принтера, у которого "печка" для фиксирования тонера на бумаге оказалась очень похожей на ту, что требуется для такого устройства. Оставалось ее немного доработать механически, разработать и изготовить электронную часть ламинатора.

Прототипом узла управления ламинатором послужил универсальный микроконтроллерный модуль [1], но использован микроконтроллер с меньшим числом выводов, а графический ЖКИ заменен символьным. Блок сопряжения узла управления с шаговым двигателем, перемещающим пакет из заготовки платы и наложенного на нее листа бумаги с рисунком печатных проводников, выполнен на паре специализированных микросхем L297 и L298N. Изготовлен также симисторный коммутатор нагревателя "печки".

Ламинатор для изготовления печатных плат
Рис. 1 (нажмите для увеличения)

Схема узла управления показана на рис. 1. В нем применен микроконтроллер PIC16F876A-I/SP (DD1), работающий с тактовой частотой 20 МГц, стабилизированной кварцевым резонатором ZQ1. К разъему X5 при необходимости подключают ЖКИ WM-C0801M (одна строка из восьми символов). Номера контактов этого разъема совпадают с номерами выводов указанного индикатора. В ламинаторе ЖКИ используется только как технологический. В процессе подборки оптимального режима ламинирования он показывает температуру "печки" и число проходов платы через нее. Для обычной работы прибора ЖКИ не требуется, и его можно не подключать.

Сдвиговый регистр DD2 преобразует сформированный микроконтроллером последовательный код управления ЖКИ в необходимый для работы последнего параллельный. Оптимальную контрастность изображения на экране ЖКИ устанавливают подстроечным резистором R17. Транзистор VT1 по сигналам микроконтроллера включает и выключает подсветку экрана индикатора.

В процессе работы ламинатора микроконтроллер получает сигналы от двух датчиков. Один из них - оптрон U1 с открытым оптическим каналом - сигнализирует о наличии платы в "печке". Показания другого - датчика температуры DS18B20 (BK1) - нужны для контроля за процессами нагревания и остывания "печки". Кнопки SB1 - SB5 предназначены для управления ламинатором.

Транзистор VT2 по сигналам микроконтроллера включает и выключает соединенный с разъемом X7 вентилятор (компьютерный габаритами 80x80x20 мм).

Двухцветный светодиод HL1 зеленым свечением показывает, что ламинатор включен и находится в режиме ожидания. Его цвет становится красным во время прогревания "печки", а также, когда пакет из листа бумаги с рисунком печатных проводников и заготовки платы находится в чувствительной зоне оптрона U1.

Ламинатор для изготовления печатных плат
Рис. 2

Для загрузки программы в уже установленный на плате микроконтроллер DD1 к разъему X4 подключают программатор согласно схеме, изображенной на рис. 2, при этом от разъема X5 следует отключить ЖКИ. По завершении программирования для нормальной работы узла управления программатор отключают, а контакты 1, 2 и 8, 9 разъемаX4 соединяют перемычками S1 и S2 (см. рис. 1).

Ламинатор для изготовления печатных плат
Рис. 3 (нажмите для увеличения)

Ламинатор для изготовления печатных плат
Рис. 4

Чертеж печатной платы узла управления показан на рис. 3, ее размеры - 90x79 мм. Оптрон U1 и датчик температуры ВК1 размещены на отдельной плате размерами 80x20 мм (рис. 4) таким образом, что входят в отверстия, имеющиеся в верхней части корпуса "печки". Предназначенный для работы на прерывание светового потока оптрон с открытым оптическим каналом KTIR0621DS (рис. 5) переделан для работы "на отражение". Для этого он разрезан на две части (с излучающим диодом и с фототранзистором), которые смонтированы на плате так, что их излучающее и чувствительное к излучению отверстия направлены в сторону проходящего рядом с датчиком пакета. Для наилучшей чувствительности к отраженным от него лучам угол между излучателем и фотоприемником нужно подобрать. Поскольку максимальная температура, которую может измерить датчик DS18B20, не превышает 127 °C, а "печка" разогревается значительно сильнее, он должен располагаться на некотором удалении от нагревающихся частей.

Ламинатор для изготовления печатных плат
Рис. 5

Узел управления формирует на разъеме X6 сигнал включения и выключения нагревателя "печки" ламинатора. Однако этот сигнал маломощный, поэтому служащую нагревательным элементом "печки" мощную галогенную лампу соединяют с разъемом X6 через симисторный коммутатор. Он собран по обычной схеме (рис. 6) на оптроне MOC3063 (U1), обеспечивающем гальваническую развязку цепи управления и включение нагрузки при нулевом мгновенном значении напряжения в сети, и мощном симисторе BT139-800 (VS1).

Ламинатор для изготовления печатных плат
Рис. 6

Печатная плата коммутатора показана на рис. 7.

Ламинатор для изготовления печатных плат
Рис. 7

Разъем X3 узла управления соединяют плоским кабелем с разъемом X1 блока сопряжения с шаговым двигателем. Схема этого блока изображена на рис. 8.

Ламинатор для изготовления печатных плат
Рис. 8 (нажмите для увеличения)

Подключенный к его разъемуX2 шаговый двигатель M1 - двухфазный биполярный от лазерного принтера XEROX PHASER 3121. Для преобразования логических сигналов управления в импульсы тока в обмотках двигателя применен распространенный комплект специализированных микросхем L297 (DD1) и L298N (DA2). Это упростило конструкцию блока и уменьшило число компонентов в нем.

От узла управления на разъем X1 поступают сигналы Reset (установка в исходное состояние) и Enable (разрешение работы двигателя), а по каждому импульсу Step двигатель выполняет один шаг в направлении, указанном сигналом Dir. Микросхема dD1 формирует сигналы включения и выключения тока в обмотках двигателя в необходимом порядке. Их доводит до нужного для его работы уровня микросхема DA2.

Диоды VD1-VD8 устраняют выбросы напряжения самоиндукции на обмотках двигателя при их коммутации.

Подключенные к выводам 1 и 15 микросхемы DA2 мощные резисторы R10 и R11 - датчики тока в обмотках. Они дают возможность микросхеме DD1 измерять ток, текущий по этим обмоткам, и с помощью ШИМ управлять его значением. Подстроечным резистором R2 регулируют подаваемое на микросхему dD1 образцовое напряжение Uref, задающее уровень, на котором происходит отсечка тока в обмотках двигателя. Резистор R5 и конденсатор С2 - частотозадающие элементы внутреннего тактового генератора микросхемы DD1.

Съемными перемычками S1-S3за-дают режимы работы блока. Перемычку S1 устанавливают в положение 1-2, если шаговый двигатель M1 - биполярный, или в положение 2-3, если он униполярный. При перемычке S2 в положении 1-2 двигатель работает в режиме полных шагов, а в положении 2-3 - половинных. Перемычка S3 необходима, если выход подаваемого на блок сигнала Enable выполнен по схеме с общим коллектором (стоком). Подробное описание работы комплекта микросхем L297, L298 можно найти в [2].

В блоке сопряжения находятся также интегральные стабилизаторы DA1 и DA3, обеспечивающие стабилизированным напряжением 5 В и 12 В не только этот блок и шаговый двигатель M1, но и узел управления, а также вентилятор, установленный в корпусе ламинатора. Источником напряжения 15 В для питания ламинатора служит импульсный блок питания от ноутбука, рассчитанный на ток нагрузки 4 А.

Чертеж печатной платы блока сопряжения изображен на рис. 9.

Ламинатор для изготовления печатных плат
Рис. 9

Во всех узлах устройства применены постоянные резисторы МЛТ, С2-33, оксидные конденсаторы К50-35 или импортные, остальные конденсаторы - К73-17. Микросхема DA2 блока сопряжения снабжена теплоотводом из отрезка алюминиевого уголка 20x25 мм с толщиной полок3 мм и длиной 55 мм. В полке уголка, не прилегающей к микросхеме, просверлено для улучшения циркуляции воздуха 12 отверстий диаметром 4 мм. Интегральные стабилизаторы DA1 и DA3 закреплены на таком же, но без дополнительных отверстий, теплоотводе.

Привод шагового двигателя, изъятый из лазерного принтера XEROX PHASER 3121, переделан. Его основание обрезано до размеров 120x70 мм, оси некоторых шестерен аккуратно выпрессованы, в них просверлены отверстия диаметром 2,5 мм и глубиной 10 мм, в которых нарезана резьба М3 для крепления на основании в новых заранее рассчитанных точках. Чтобы уменьшить скорость вращения "печки", добавлены еще две шестерни. Получившийся привод показан на рис. 10. Его конструкция может быть и другой, все зависит от наличия деталей для доработки имеющегося привода.

Ламинатор для изготовления печатных плат
Рис. 10

Для ламинатора использован корпус от струйного принтера HP photosmart 7260. Из его нижней половины удалены все ненужные перегородки и установлено основание размерами 300x130 мм из дюралюминиевого листа толщиной 3 мм. На основании закреплены "печка", извлеченная из лазерного принтера XEROX PHASER 3121, и ее привод с блоком сопряжения с двигателем, а также блок питания от ноутбука. С "печки" сняты все лишние детали: пластмассовый флажок, перекрывавший оптрон (датчик наличия бумаги), и некоторые другие. Плата датчиков закреплена винтом в верхней части "печки", причем датчики входят в имеющиеся там отверстия.

В левой части корпуса находится плата узла управления. Расположена она так, чтобы установленными на ней кнопками можно было управлять с помощью старых предусмотренных в использованном корпусе клавиш. Собранный ламинатор без верхней откидывающейся крышки показан на рис. 11. На этой крышке закреплен вентилятор. Для забора наружного воздуха в ней сделано круглое отверстие.

Ламинатор для изготовления печатных плат
Рис. 11

При первом включении узла управления происходит проверка EEPROM микроконтроллера DD1 на отсутствие информации. Если энергонезависимая память чиста (заполнена кодами 0FFH), то в нее переписываются из программ

ной памяти значения необходимых параметров, принимаемые по умолчанию. Если информация в EEPROM уже имеется, то на этапе инициализации она не изменяется и используется программой в дальнейшей работе. В процессе работы значения хранящихся в EEPROM параметров можно корректировать, подбирая нужный режим ламинирования. Откорректированные значения сохраняют в EEPROM нажатием на кнопку SB4.

Во время инициализации микроконтроллера включен красный кристалл светодиода HL1. По ее окончании он выключается, а зеленый кристалл включается - ламинатор готов к работе. Процесс ламинирования запускают нажатием на кнопку SB5. При этом "печка" начинает вращаться назад и включается ее нагреватель. О процессе разогрева сигнализирует красное свечение светодиода.

Достаточно прогревшись, "печка" начинает вращаться вперед, вновь включается зеленый кристалл светодиода. Теперь в нее можно подать пакет из фольгированного стеклотекстолита и наложенного на него листа бумаги с рисунком будущих печатных проводников. Я печатаю этот рисунок на бумаге плотностью 230, предназначенной для фотопечати на струйном принтере.

Когда пакет входит в чувствительную зону оптрона-датчика его наличия в "печке", включается красный кристалл светодиода, а программа микроконтроллера ждет выхода пакета из чувствительной зоны, после чего цвет свечения светодиода становится зеленым. Поскольку оптический датчик расположен на некотором расстоянии от середины "печки", для завершения прохода через нее пакета шаговый двигатель делает заданное число дополнительных шагов. По умолчанию - 1100, но при повторении конструкции "печка" и ее привод могут быть другими, так что это число придется подобрать экспериментально.

Затем направление движения пакета изменяется на противоположное, и он проходит "печку" в обратном направлении до входа, а затем выхода из зоны действия датчика. По умолчанию задано пять проходов пакета через "печку", в моем варианте это обеспечивает очень хорошую адгезию тонера к фольге.

Число проходов можно увеличить нажатиями на кнопку SB2 или уменьшить, нажимая на кнопку SB3. Если же нажать и удерживать одну из этих кнопок более 3 с, она станет изменять число дополнительных шагов. Возврат в режим изменения числа проходов произойдет при нажатии на любую другую кнопку. Когда завершится последний проход, "печка" будет выключена, пакет выведен из нее, включен вентилятор для охлаждения "печки". Пакет можно оставить в ламинаторе, чтобы он тоже остыл. Определив по показаниям датчика температуры BK1, что "печка" достаточно остыла, программа микроконтроллера выключит вентилятор, привод вращения "печки" и включит зеленый кристалл светодиода.

Как правило, бумага легко отделяется от остывшей заготовки платы без отмачивания, после чего можно сразу переходить к травлению фольги. Проводники шириной 0,3 мм и более (меньше не пробовал) получаются очень хорошо.

Чтобы прервать начатый процесс ламинирования до его автоматического завершения, следует нажать на кнопку SB1. При этом будет выключен нагреватель, включен вентилятор, а "печка" станет вращаться назад, выводя пакет наружу. Этот режим выключается автоматически по показаниям датчика температуры BK1 или вручную нажатием на кнопку SB1.

Налаживание устройства начинают с регулировки контрастности ЖКИ резистором R17 на плате управления и установки номинального тока шагового двигателя подстроечным резистором R2 на плате блока сопряжения с шаговым двигателем. В моем варианте напряжение, поступающее с движка этого резистора на вывод 15 микросхемы L298N, равно 1 В.

Угол между оптическими осями излучающего диода и фотодиода оптрона с открытым каналом U1 (см. рис. 1 и рис. 4) подбирают по минимуму показаний вольтметра, подключенного между выводами 2 и 3 разъема X1 узла управления при соединенных с этим узлом датчиках и вставленном в "печку" листе белой бумаги.

После того как ламинатор собран и заработал, устанавливают методом проб и ошибок число дополнительных шагов двигателя, необходимых, чтобы изготавливаемая плата проходила всю "печку", но не выпадала их нее, и число проходов платы через "печку", обеспечивающее наилучшую адгезию тонера к фольге.

Файлы печатных плат в формате Sprint Layout и программу микроконтроллера ламинатора можно скачать с ftp://ftp.radio.ru/pub/2013/10/laminator.zip.

Литература

  1. Киба В. Универсальный микроконтроллерный модуль с графическим ЖКИ. - Радио, 2010, № 3, с. 28-30.
  2. ВильямсДж. Программируемые роботы. Создаем робота для своей домашней мастерской - М.: НТ Пресс, 2006.

Автор: В. Киба

Смотрите другие статьи раздела Технологии радиолюбителя.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Горькие продукты улучшают работу мозга 08.11.2025

Как выяснили японские ученые, горький вкус флаванолов играет важную роль в стимуляции центральной нервной системы. Даже при минимальном усвоении этих веществ организм получает сигнал к повышению активности нейромедиаторов и улучшению когнитивных функций, что делает натуральные продукты с горьким вкусом потенциально полезными для мозга и общей физиологии. В поисках способов улучшить работу мозга ученые все чаще обращаются к натуральным соединениям, содержащимся в привычных продуктах питания. Одним из таких веществ являются флаванолы, присутствующие в какао, красном вине и ягодах. Исследователи из Технологического института Сибаура в Японии выяснили, что горький и вяжущий вкус этих соединений способен активировать мозг через вкусовые рецепторы, способствуя улучшению памяти, внимания и способности к обучению. Ранее было известно, что флаванолы защищают нейроны и поддерживают когнитивные функции, однако их биодоступность - доля вещества, поступающая в кровь - крайне низка. Это вызвал ...>>

Дождевой электрогенератор 08.11.2025

Группа разработчиков Нанкинского университета аэронавтики и астронавтики представила дождевой электрогенератор, который превращает дождевые капли в источник электричества, используя саму воду как структурный и электрический элемент. В отличие от традиционных капельных генераторов, где электричество создается на твердых диэлектрических пленках с металлическими электродами, новое устройство плавает непосредственно на поверхности воды. Вода одновременно выполняет роль опоры и проводника, что позволило снизить вес системы на 80%, а стоимость уменьшить почти наполовину, сохранив при этом мощность до 250 вольт на каждую каплю. "Мы позволили воде одновременно выполнять структурную и электрическую функции, создав легкую, доступную и масштабируемую систему", - объяснил профессор Ванлин Гуо, ведущий автор исследования. Такая концепция открывает путь к созданию гидровольтаических систем, которые могут работать в водоемах без использования суши, дополняя солнечные и ветровые технологии. П ...>>

Климат влияет на длительность беременности 07.11.2025

Беременность традиционно воспринимается как естественный биологический процесс с предсказуемыми сроками, однако современные исследования все чаще доказывают, что на ее продолжительность влияют факторы, выходящие далеко за пределы медицины. Среди них особое место занимают климат и окружающая среда - именно эту взаимосвязь впервые подробно изучили ученые из Университета Кертина в Австралии. Их работа раскрывает, что экстремальные погодные условия способны не только вызывать преждевременные роды, но и, напротив, удлинять срок беременности. Команда исследователей проанализировала данные почти 400 тысяч новорожденных, появившихся на свет в Западной Австралии. Результаты оказались неожиданными: климатические колебания заметно влияли на организм будущих матерей, особенно у тех, кто рожал после 41-й недели беременности. По словам доктора Сильвестра Додзи Ньядана из Школы народного здоровья Университета Кертина, проблема перенашивания долгое время оставалась в тени, хотя ее последствия могут ...>>

Случайная новость из Архива

Ветра для энергетики хватит на всех 09.06.2005

Если бы человечество захотело удовлетворять свои нужды в электроэнергии только за счет ветра, пришлось бы занять ветроэлектрогенераторами площадь, равную Саудовской Аравии, а электричество подорожало бы вдвое.

Таков результат исследования, проведенного сотрудниками Утрехтского университета (Голландия). Они разбили всю территорию суши, кроме гор, плотно застроенных районов и заповедников, на 66 тысяч участков и оценили ветроэнергетический потенциал каждого. При этом принято, что экономично использовать ветер, если средняя его скорость на этом конкретном участке превышает 4 метра в секунду.

Оказалось, что такую среднегодовую скорость ветра имеют 20% площади суши. Если использовать весь этот потенциал, мы стали бы получать ежегодно 96 петаватт-часов электроэнергии, что в шесть раз превышает ее мировое потребление в 2001 году. Но при этом электричество подорожало бы в 26 раз.

Однако если ограничиться уровнем 2001 года и ставить на квадратном километре по четыре ветряка мощностью по одному мегаватту (реальная плотность размещения на некоторых ветроэлектростанциях сейчас в четыре раза выше), то для удовлетворения всех нужд понадобится площадь всего в 2,4 миллиона квадратных километров, а цена на энергию возрастет только вдвое.

В большинстве районов мира ветра более чем достаточно для удовлетворения всех потребностей в энергии. Так, на территории бывшего СССР энергии ветра в 12 раз больше, чем нужно, на территории Западной Европы - в два раза, США - в пять раз, а в Восточной Африке - в 358 раз.

К сожалению, в таком густонаселенном регионе, как Юго-Восточная Азия, ветер, как правило, очень слаб. И, вообще, полностью полагаться только на ветер невозможно - уж очень изменчива эта стихия, а для выравнивания спроса и предложения в разных районах пришлось бы создать единую мировую систему электропередач.

Другие интересные новости:

▪ Новый носитель информации - высокоплотный и недорогой

▪ Преобразование угля в графит анодного качества

▪ 4 ТБ от Western Digital

▪ Расшифровка обугленных Геркуланумских свитков

▪ Революционный смартфон от Nokia

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Микрофоны, радиомикрофоны. Подборка статей

▪ статья Плыви, мой челн, по воле волн. Крылатое выражение

▪ статья Какой знаменитый россиянин составил свое имя из начальных букв имен своих детей? Подробный ответ

▪ статья Работа с циркулярной пилой. Типовая инструкция по охране труда

▪ статья Автосторож на одной микросхеме. Энциклопедия радиоэлектроники и электротехники

▪ статья Чтение мыслей по-цыгански. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025