Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Радиоимпульсное умножение частоты. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Студенту на заметку

Комментарии к статье Комментарии к статье

При конструировании коротковолновых любительских радиостанций и измерительных приборов, отвечающих современным требованиям по стабильности, точности градуировки и отсчета частоты по шкале, встречаются значительные трудности. Основная из них - получение высокостабильных, точно откалиброванных опорных частот.

Наиболее простой способ получения фиксированных частот - это применение кварцевого генератора с резонаторами на соответствующие частоты. Однако не всегда бывает возможным подобрать кварцевые резонаторы на необходимые частоты, и кроме того, резонаторы имеют разброс по частоте, который не всегда удается скомпенсировать элементами подстройки. Другие распространенные способы получения фиксированных частот - это непосредственное умножение частоты низкочастотного генератора и гетеродинирование.

Способ непосредственного умножения частоты заключается в том, что на вход нелинейного элемента НЭ (рис. 1, а) подаются гармонические колебания от генератора Г, которые превращаются в последовательность прямоугольных, косинусоидальных или другой формы видеоимпульсов с периодом Т и длительностью импульса т.

Радиоимпульсное умножение частоты

Спектр видеоимпульсов (рис. 1, б) состоит из гармоник, кратных основной частоте, амплитуда которых уменьшается с увеличением номера гармоники. Поэтому использование гармоник с большими номерами нецелесообразно из-за их малого уровня и трудности отфильтровать нужную гармонику (с помощью фильтра Ф).

Энергетически выходной спектр умножителя характеризует к. п. д. преобразования

Радиоимпульсное умножение частоты

где Рс- мощность полезной гармоники; Робщ - мощность всех составляющих.

"Чистота" сигнала на выходе НЭ характеризуется коэффициентом боковых гармоник

Радиоимпульсное умножение частоты

где Uп - амплитуда полезной гармоники, Uб- амплитуда соседней гармоники.

Из таблицы видно, что с увеличением номера используемой гармоники к.п.д. преобразования уменьшается очень быстро. Поэтому использование видеоимпульсного умножителя целесообразно при коэффициенте умножения не больше нескольких единиц (обычно 3-5). Чтобы получить большие коэффициенты умножения, необходимо включать последовательно несколько каскадов умножения и усиления с элементами селекции на выходе.

Номер гармоники,n Косинусоидальные видеоимпульсы Короткие прямоугольные видеоимпульсы
n y n y
2 0,22 - 0,16 1
3 0,14 1,8 0,15 1
4 0,11 1,2 0,14 1
5 0,08 1 0,13 1
10 0,04 0,8 0,1 1
30 0,02 0,7 0,05 1
50 0,0 0,5 0,033 1
100 0,002 0,5 0,018 1

Спектр коротких прямоугольных видеоимпульсов более богат гармониками: из таблицы видно, что n с увеличением номера гармоники уменьшается медленнее, чем в случае косинусоидальных импульсов, но все же является малой величиной. Коэффициент боковых гармоник велик, и для ослабления вредных составляющих спектра требуются сложные избирательные устройства.

Если сетка частот формируется методом гетеродинирования, то возникают проблемы с подбором кварцевых резонаторов, подгонкой или корректировкой их частоты.

Радиоимпульсные умножители частоты

Метод радиоимпульсного умножения частоты, позволяющий использовать гармоники вплоть до 1000, был впервые предложен в нашей стране В. И. Григулевичем в 1952 году. Замечательным свойством этого метода является также возможность получения почти идеального спектра. Достигается это тем, что преобразуемому сигналу придается форма последовательности импульсов с высокочастотным заполнением (радиоимпульсов), удовлетворяющим некоторым условиям.

Для радиоимпульсов, так же как и для видеоимпульсов (см. рис. 1, б), форма, ширина и расстояние между гармониками спектра определяются формой, длительностью и частотой следования импульсов. Кроме того, частота заполнения импульсов определяет положение максимума огибающей спектра на оси частот. Положение же гармоник на оси частот зависит от закона изменения начальной фазы колебаний от импульса к импульсу.

Если, начальные фазы высокочастотного заполнения, отдельных импульсов изменяются по случайному закону, то положение гармоник на оси частот принимает также случайные значения. Спектр такой радиоимпульсной последовательности будет сплошным (шумовым) в пределах огибающей.

Если начальные фазы радиоим-пульсов когерентны, то есть радиоимпульсы как бы "вырезаны" из одного непрерывного синусоидального колебания (рис. 2, а), то максимум огибающей спектра (рис. 2, б) совпадает с частотой заполнения (fо) и положение гармоник на оси частот определяется частотой заполнения, что является недостатком данного случая. Такие колебания можно рассматривать как непрерывные, модулированные прямоугольными импульсами.

Радиоимпульсное умножение частоты
Рис.2.

Если начальные фазы Фо радиоимпульсов одинаковы и постоянны (между высокочастотным заполнением соседних импульсов существует постоянный сдвиг фаз), то последовательность импульсов становится чисто периодической (рис. 3,а). Спектр такой последовательности (рис. 3,б) состоит из гармоник, кратных частоте повторения, и не зависит от частоты заполнения.

Радиоимпульсное умножение частоты

Поэтому в данном случае имеет место эффект умножения частоты повторения. Частота гармоники с максимальной амплитудой находится вблизи частоты заполнения. Ослабление побочных гармоник, в частности двух соседних, может быть получено значительным, вследствие чего требования к фильтру на выходе умножителя могут быть существенно снижены. Быстрота уменьшения амплитуд соседних гармоник зависят от длительности импульса. Чем больше т, тем ближе к fо и чаще расположены нули огибающей, тем быстрее затухают гармоники. Значит, для повышения коэффициента полезного действия и уменьшения коэффициента боковых гармоник необходимо увеличивать отношение т/ Т. Практически достижимые максимальные значения т/T лежат в пределах 0,9- 0,95. При этом коэффициент n достигает значения 0,9, а у=0,1. Но даже при отношении т/T=0,5 радиоимпульсное умножение имеет существенное преимущество по сравнению с видеоимпульсным, обеспечивая значения n=0,5 и у=0,6.

Способы построения радиоимпульсных умножителей частоты.

На рис. 4 показана блок-схема гетеродина, построенная по принципу радиоимпульсного умножения частоты.

Радиоимпульсное умножение частоты
Рис.4

Колебания от кварцевого генератора КГ поступают на нелинейный элемент НЭ. Сформированные после нелинейного элемента видеоимпульсы подаются на управляющий элемент УЭ, который создает условия возникновения или срыва колебаний автогенератора Г. Стабильность его частоты не имеет существенного значения, т. к. от нее зависит .только изменение амплитуды рабочей гармоники, стабильность же частоты гармоник определяется стабильностью кварцевого генератора. Необходимо, чтобы процесс возникновения колебаний высокочастотного заполнения происходил одинаково для каждого импульса (рис. 3,а). Подобный процесс можно осуществить только в автогенераторах. Практические схемы могут быть построены по-разному, в зависимости от того, какой из параметров используется для срыва автоколебаний.

В маломощных генераторах коротковолнового диапазона целесообразно использовать схему с изменением эквивалентного сопротивления контура. Принцип работы такой схемы может быть пояснен с помощью рис. 5.

Радиоимпульсное умножение частоты
Рис.5

Контур LC является колебательной системой автогенератора Г, Параллельно колебательному контуру через разделительный конденсатор СБ подключен диод Д. На диод через резистор R подаются двухполярные видеоимпульсы с генератора ГИ. В моменты времени, когда на диод поступают положительные импульсы, диод заперт и в генераторе начинают возникать автоколебания. Во время отрицательных импульсов диод открывается и шунтирует контур. Колебания генератора срываются. Резистор R должен выбираться так, чтобы при запертом диоде он не сильно шунтировал контур. Вместо диода можно использовать транзистор или лампу. На рис. 6 приведена схема, в которой в качестве параметра возбуждения используется крутизна характеристики лампы.

Радиоимпульсное умножение частоты
Рис.6

При поступлении импульсов анодное напряжение лампы повышается, анодный ток увеличивается и возникают колебания высокой частоты. В отсутствии импульса напряжение на аноде падает и колебания срываются. Аналогичное управление крутизной можно осуществить и в сеточной цепи лампы. На рис. 7 показан вариант схемы с использованием транзисторов.

Радиоимпульсное умножение частоты

Существуют схемы, в которых параметром возбуждения служит коэффициент обратной связи.

Устройства формирования импульсов необходимо хорошо экранировать во избежание просачивания гармоник. Необходима хорошая фильтрация цепей питания, соблюдение общих правил монтажа и применение развязок. Одним из радикальных методов борьбы с паразитными наводками и излучениями является формирование сигналов на малых уровнях. Поэтому применение транзисторных схем особенно целесообразно. При этом также уменьшаются габариты аппаратуры, вес, потребление энергии.

Возможно, что для конструкторов любительской коротковолновой и измерительной аппаратуры описанный выше способ получения фиксированных частот окажется .заманчивым. Тогда, используя приведенные выше принципы построения схем, внося в них элементы творчества, конструкторы смогут найти этому методу свое место среди других технических решений.

Литература:

1. В. И. Григулевич. Новый способ умножения частоты. "Электросвязь", 1956, № 6.
2. В. И. Григулевич, Н. Я. Иммореев. Радиоимпульсное преобразование частоты. "Советское радио", 1966.
3. И. X. Ризкин. Умножители и делители частоты. "Связь", 1966.
4. Б. Пристли. Кварцевый калибратор УКВ диапазона. "RSGB Bulletin", June, 1967

Автор: т. Лабутин (UA3CR); Публикация: Н. Большаков, rf.atnn.ru

Смотрите другие статьи раздела Студенту на заметку.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Таурин не является биомаркером старения 22.06.2025

В поисках биомаркеров старения ученые все чаще обращаются к молекулам, которые ранее демонстрировали многообещающие результаты на животных. Одной из таких субстанций стал таурин - аминокислота, известная широкому кругу людей как компонент энергетических напитков. В последние годы ей приписывали способность замедлять возрастные изменения и даже продлевать жизнь. Однако новое масштабное исследование, проведенное учеными из Национального института здоровья США (NIH), поставило под сомнение ее значимость в контексте старения человека. Исследование включало сравнительный анализ уровня таурина в крови у трех видов: людей, макак-резусов и лабораторных мышей. Авторы проекта изучали, как меняется концентрация вещества в организме от молодого возраста до глубокой старости. Ожидалось, что таурин будет снижаться с возрастом, подтверждая его возможную роль как биомаркера старения. Однако полученные данные оказались куда более сложными. Как пояснила Мария Эмилия Фернандес, одна из соавторов ра ...>>

Стандарт NFC 15 22.06.2025

Технология ближней бесконтактной связи NFC стала повседневным инструментом для миллионов пользователей по всему миру. Она обеспечивает быстрые и удобные платежи, позволяет открывать двери, оплачивать проезд и мгновенно подключать устройства. Однако, несмотря на широкое распространение, сам стандарт NFC развивался почти незаметно - без резонансных версий и громких анонсов. И вот теперь, в июне 2025 года, организация NFC Forum представила пятнадцатую версию протокола, которая принесет ощутимые улучшения в ежедневном взаимодействии с гаджетами. Одним из ключевых изменений стало увеличение радиуса действия: если раньше для работы NFC нужно было почти прикасаться телефоном к терминалу, то теперь соединение возможно уже на расстоянии до двух сантиметров. Хотя разница кажется незначительной, именно этот промежуток в доли сантиметра часто мешал корректной работе - пользователи нередко вынуждены были искать "тот самый угол" или точку, где произойдет считывание. В реальности некоторые устр ...>>

Эффективная защита от коррозии 21.06.2025

Коррозия - один из главных врагов железа и его сплавов, ежегодно причиняющий ущерб на миллиарды долларов в инфраструктуре, транспорте и промышленности. Существующие антикоррозионные решения, такие как цинковое покрытие, со временем теряют эффективность: они отслаиваются, повреждаются или дают микротрещины, открывая путь влаге и соли. На этом фоне ученые активно ищут способы сделать защиту от коррозии более стойкой, долговечной и экономичной. Группа исследователей из Института химии Еврейского университета в Иерусалиме предложила новый подход к решению этой задачи. В отличие от традиционных защитных покрытий, которые опираются лишь на физическую адгезию к металлу, их метод включает создание прочной химической связи на молекулярном уровне. Основа разработки - двухслойная структура, где первым наносится слой N-гетероциклических карбенов, а вторым - полимер высокой прочности. Карбены играют роль своеобразного "молекулярного суперклея", надежно соединяя металл и полимер в единую систе ...>>

Случайная новость из Архива

Ethernet-коммутаторы Microchip SparX-5 16.01.2022

Компания Microchip выпустила новую линейку промышленных и корпоративных Ethernet-коммутаторов SparX-5.

SparX-5 - это полностью управляемые L2/L3 Ethernet-коммутаторы с общей пропускной способностью от 64 до 200 Gbps, которая может быть разделена между 64-мя 1G/2.5G/5G/25G портами, позволяя добиться необходимого соотношения между количеством подключенных абонентов и скоростью их подключения.

Для подключения PHY и SFP/XFP-модулей используются скоростные 5G/10G/25G SerDes, реализующие последовательные интерфейсы SGMII/QSGMII/USXGMII.

Для индустриального применения выпущена производная серия SparX-5i, имеющая наиболее полную на сегодняшний день поддержку стандарта Time Sensitive Networking (TSN), необходимую для реализации сетей реального времени, имеющих детерминированное время доставки пакета.

Характеристики коммутаторов SparX-5/5i:

Максимальное количество портов: x64
Пропускная способность: 64...200 Gbps
Поддержка TSN и SyncE (SparX-5i)
Интегрированный процессор: двухъядерный ARM Cortex-A53 CPU @ 1GHz
Интерфейсы к PHY, SFP/XFP-модулям:
SGMII/QSGMII/USXGMII
Температурный диапазон функционирования:
от 0 до 105°C (переход)
от -40 до 110°C (переход)
Корпус: FCBGA-888

Другие интересные новости:

▪ Устройство, разлагающее звуки без помощи цифровых технологий

▪ При посадке на рейс покажите работающий гаджет

▪ Мышь слева

▪ Электростанция на бактериях

▪ Результат APU AMD Trinity A6 для ультратонких ноутбуков в тесте 3DMark

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Автомобиль. Подборка статей

▪ статья Благодарю, не ожидал... Крылатое выражение

▪ статья Зачем нам скелет? Подробный ответ

▪ статья Отделочник изделий. Типовая инструкция по охране труда

▪ статья Индикаторы искрообразования. Энциклопедия радиоэлектроники и электротехники

▪ статья Извержение вулкана. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:




Комментарии к статье:

Алексей
Оригинал статьи Лабутина был опубликоан в журнале Радио #12/1969 год


Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025